Defense Issues

Military and general security

    Advertisements
  • Follow Defense Issues on WordPress.com
  • Enter your email address to follow this blog and receive notifications of new posts by email.

    Join 257 other followers

  • November 2019
    M T W T F S S
    « Sep    
     123
    45678910
    11121314151617
    18192021222324
    252627282930  
  • Categories

  • Advertisements

Posts Tagged ‘air superiority fighter’

Air superiority fighter camouflage patterns proposal

Posted by picard578 on March 15, 2015

flx1-standard Read the rest of this entry »

Advertisements

Posted in proposals | Tagged: , , , , | 14 Comments »

Air superiority fighter proposal 6

Posted by picard578 on August 2, 2014

text and drawings by Picard578

3D designs by Riley Amos

Requirements

Introduction

Modern air forces are getting loaded with highly complex, expensive “mutirole” aircraft. Result is decreasing force size for same or increasing cost, while at the same time combat effectiveness of these air forces decreases. Main reasons are lack of understanding of components of fighter aircraft effectiveness, inability to enforce design discipline upon service and industry, and infatuation with new (and old) technologies without understanding wether, and why, certain technologies work or do not work.

Nature of air to air combat

“Those who cannot remember the past are condemned to repeat it.”

—G. Santayana

Fighter aircraft exist to destroy other aircraft, and allow other aircraft to carry out their missions without interference from enemy fighter aircraft. That being said, there exists a colloqial – and incorrect – use of term “fighter aircraft” as being applicable to any tactical aircraft, even those that are primarly or exclusively designed for ground attack, such as the A-10 and the F-35. Task of the aircraft is to enable pilot to bring weapons systems in position for a successful kill.

You never make a big truck and tomorrow make it a race car. And you never can make a big bomber and the next day a . . . fighter. The physical law means that you need another airplane. . . . You should do one job and should do this job good.

—Colonel Erich “Bubi” Hartmann, GAP

Most important factor in aerial warfare is pilots’ skill. Read the rest of this entry »

Posted in proposals | Tagged: , , , , , | 190 Comments »

Air superiority fighter proposal

Posted by picard578 on October 26, 2013

Historical lessons

“History is a vast early warning system.”

Norman Cousins

When designing a fighter aircraft – or any weapon – there is a basic question: should one go for simplest solution, or accept a level of complexity in hopes of achieving better performance? How much simple or complex weapon can become before excess simplicity, or excess complexity, harm its performance? Only way to answer that question is to look at the real war, and apply lessons learned through research in designing a weapon.

In Poland campaign in World War II, several Polish pilots became aces in open-cockpit 225 mph biplanes when fighting against 375 mph Messerschmitt 109, clearly showing that pilot skill is more important than weapons characteristics. Later, over the Dunkirk, British pilots did poorly despite using fighters comparable to Me-109, primarly due to inexperienced pilots, unrealistic training (unlike Luftwaffe, 1930s RAF did not practice squadron-on-squadron training) and outdated tactics – such as three-ship “vic” formation, which was far less flexible than German “finger four”. Aside from flexibility in tactics, “finger four” system allowed aircraft to effectively cover each other from surprise bounces.

RAF headquarters’ insistence on close control of fighters proved detrimental, and small number of pilots and fighters avaliable to 11th Group caused fatigue, which when combined with the fact that RAF was still switching to finger four system and that many pilots were grossly undertrained led to heavy losses. RAF did have advantage in that it fought over a friendly territory, which meant that 50% of pilots shot down were safely recovered, compared to 0% for Luftwaffe. Fighter command’s preference for grass fields over actual runways allowed entire squadrons to take off at the same time, and Germans failed to attack 11th Group bases and control systems.

German fighters did not use belly tanks, which limited them to 20 minutes over England. This, plus Goering’s insistence on close escort of bombers, caused heavy losses in aircraft, and more importantly, pilots – aircraft were replaced at an adequate rate, but pilots were not. When Allied started bombing Germany, small P-51 was second longest-ranged fighter in the US arsenal (800 mile combat radius, compared to 900 mile for P-38 and 600 miles for P-47). By spring 1944, P-38 was replaced by P-51 due to huge losses and poor kill/loss ratio, caused by its huge size, low maximum g, poor roll rate and poor dive acceleration; two engines were also a survivability handicap, since aircraft that lost one was quickly finished by German fighters. P-51D, on contrary, could match or surpass turn rate of FW-190A and Me-109G, was far faster and could match them in roll. Similarly, German heavy bomber-destroyer fighters were easily shot down by Allied lighter air superiority fighters such as P-51 and Spitfire. In the end, pilot attrition rendered Luftwaffe ineffective – by September 1944, it was receiveing 3.000 new fighters and 1.000 new pilots per month. Heavy P-47 proved inferior air superiority fighter to P-51 and was pulled from air superiority role alltogether; unlike P-38, it did prove a very successful CAS aircraft.

Me-262 was clearly superior to Allied turboprop fighters, and by March 1945 over 950 have been delivered. Yet shortages of fuel and pilots meant that largest number flown in a single day was 55, and they were in danger of being attacked whenever taking off or landing – and where Me-109 was capable of being road- and open field- -based, with maintenance often carried out under bridges and most infrastructure buried, Me-262 required dedicated runways. In the end, its low numbers meant that it had no impact on war despite huge performance advantage over Allied fighters.

At beginning of the war, Spitfires used 6 .303 caliber machine guns which were ineffective even against fighters. Me-109E carried two 20 mm cannons which were effective against fighters but had low muzzle velocity and rate of fire. Spitfires were later upgunned to two 20 mm cannons and four .50 cal Brownings, providing adequate lethality. US fighters standardized on Brownings, which had muzzle velocity of 885 m/s. German bomber-killer fighters used 30 mm guns, which needed 3 to 4 hits to down a heavy bomber but were inadequate against fighters due to low muzzle velocity of only 534 m/s, compared to 763 m/s for 20 mm installation on FW-190 and 860 m/s for 20 mm installation on British Spitfire.

First German night fighters did not have radar but proved as effective as radar-equipped British night fighters after ground control via broadcast commentary on bomber stream’s position, speed and heading was introduced in 1943. In same year, twin-engined fighters started receiveing radar. Main lessons of night combat were primacy of surprise, necessity to visually distinguish friend from foe (even if fighter needed to approach to as close as 60 meters), and necessity of using single-mission pilots. Read the rest of this entry »

Posted in proposals | Tagged: , , , | 67 Comments »

 
%d bloggers like this: