Defense Issues

Military and general security

Archive for October 7th, 2012

F-35 Analysis

Posted by Picard578 on October 7, 2012

Program history

F35 is designed to be LO interceptor / fleet defense / tactical bomber / ground attack / CAS / reconnaissance / air controller and intelligence plane built in CTOL, STOVL, and CATOBAR variants.

As Chuck Spinney puts it: “The problem was that each service had very different requirements. The Air Force wanted 1,763 cheap bombing trucks to replace F-16s and A-10s; the Navy wanted 480 “first day-of-the-war” deep-strike stealth bombers to compete with the Air Force in strategic bombing; and the Marines, still haunted by the ghosts of Admiral Frank Jack Fletcher and Guadalcanal, wanted to replace aging Harriers and conventional F/A-18s with 609 short takeoff vertical landing (STOVL) JSFs that will operate from big-deck amphibious assault ships if need be.” It also replaces Navy’s AV-8B, Sea Harrier and A-6.

For an example of how different requirements can cause trouble, one only has to take a look at requirements for fighters and strike aircraft: while fighter aircraft have to have as low wing loading as possible, so as to increase maneuverability to maximum, low-penetration strike aircraft work better with high wing loading and small wing. That fact alone makes it obvious what F35 is supposed to do.

Another problem was usage of computer models to settle final design before all issues have been found by flight testing.

In 2002, order was reduced by 400 planes, from 2853 to 2443 planes, and it is looking at further reduction. If F22 is any indication, US might end up with 713 planes (500 Air Force, 200 USMC), which will then cost 538 million USD per plane (F22s cost 421 million USD per plane as of 2012), and produce 383,6 billion total program expense. However, as with F22, F35 is simply too big to fail.

YF35 was even more limited than YF22 as technological demonstrator, and winner was determined by a flyoff demonstrating only low-speed handling, STOVL capability, and producibility with at least 70% parts commonality. Competitive prototyping, including working out bugs before large-scale production, was absent in both programmes. LRIP, meanwhile, escalates costs of any changes to design, essentially cementing it as well as allowing contractor to build up powerful political alliances by establishing nation-wide network of subcontractors. When weapon becomes obvious failure on performance and economical goals, it is already impossible to cancel, thus freeing contractor from obligation of having to fulfill its performance and cost promises.

Developing engine has incurred cost overruns of as much as 850 million USD.

There are also quite a few issues with the plane as well:

  • upper lift fan door actuator problems

  • ejection seat and pilot escape system failed tests

  • problems with restarting engine if it flames out in flight

  • braking on wet runaway is deficient

    • four above issues were known in 2011; reported cost to fix them was 30 million USD per plane in lots 2-5

  • no protection against cyber attacks

Also, it is not one airplane for three services; with part commonality of 30%, it is basically three different airplanes, with only looks being similar.

While some countries – such as South Korea, Japan, Norway, Italy and UK – are considering F35 as option for their air forces, evidence exists that they are only doing so due to heavy political pressure from United States; as discussed in F22 analysis, US Military Industrial Complex has unprecended influence on US Government, to the point that it could be said that Federal Government is owned by MIC. South Korea plans to buy 60 of aircraft. Situation in Korea is similar to 2003 deal in Poland, where Lockheed Martin and US Government exerted heavy political and diplomatic pressure to ensure that Poland will choose it over Eurofighter and BAE deals. United States themselves have a long history of threatening allied nations if they are unwilling to purchase US weaponry. Basically, countries aren’t buying US weapons, but alliance with United States. Similarly, United States have refused to upgrade South Korean F16s so as to make F35 only answer – excuse was that they did not want new radar technology to fall into Chinese hands, despite the fact they offered same technology on F35.

Costs

Like F22, F35 is more famous for its perpetual increase in costs than for its hyped abilities. There are many reasons for such increase, such as false cost estimates made by Lockheed Martin, reduced orders and problems with aircraft itself. Official numbers are 122 million USD as a flyaway cost, and 150 million USD as unit procurement cost. However, these numbers are outdated.

Unit costs

In 2011, one F35 of unspecified model had a weapons system flyaway cost of 207,6 million USD and unit procurement cost of 304,15 million USD, as opposed to official numbers of 122 million and 140-150 million USD, respectively. Developmental costs have increased due to many patch-ups (such as structural strengthening of rear fuselage) and fixes; costs were additionaly increased by abandonment of “fly before you buy” policy – some aircraft were bought before development was finished, and thus had to be brought up to standard later – which is extremely expensive.

In 2012 weapons system flyaway costs were 197 million USD for F35A, 237,7 million USD for F35B, and 236,8 million USD for F35C. Unit procurement costs per aircraft may have been as high as 352,8 million USD per aircraft, if 16% increase in per-unit cost is correct, giving 861,2 billion USD total program cost.

Maintenance and operating costs

F35s estimated cost per hour of flight is 35 200 USD in 2012 dollars. And that is for F35A, CTOL variant which, logically, should be easiest to maintain. Also, a leaked Pentagon report estimated that Canada’s fleet of 65 aircraft will cost 24 billion USD to maintain over next 30 years.

However, more logical would be to use F-22’s cost per flying hour as beginning point of estimate; assuming F-35 costs 80% of F-22s cost per flying hour, its operating cost will be 48 800 USD.

Strategical analysis

Effects of numbers

Effects of numbers are various. First, fewer planes means that these same planes have to do more tasks and fly more often, therefore accumulating flight ours faster and reaching designed structural life limit faster. Also, smaller force will attrite faster; more flight hours per plane will mean less time available for proper maintenance as well as greater wear and tear put on planes, further reducing already limited numbers.

In combat, side capable of putting and sustaining greater number of planes in the air will be able to put a larger sustained pressure on the enemy.

F35s shortcomings – force size and quality

F35, as it is obvious, is NOT a “low cost, affordable solution”. With its flyaway cost of over 200 million USD, it is more expensive than F15, let alone F16 it is supposed to replace. Moreover, its low reliability and high maintenance requirements are going to reduce that number even more.

Effects of training

Wars in history – such as Yom Kippur War, Croatian War for Independence or Ottoman invasion of Europe – have proved dangers of overreliance on technology as replacement for doctrine, tactics and training. Whenever technology has been solely relied on, it had failed.

F35 does not have a double-seat version, therefore harming training further; which is exceptionally noticeable with high training requirements for complicated operations like vertical landings. Simulators, meanwhile, cannot replace training – meaning that lack of training in two-seat STOVL variant will result in preventable accidents.

Strategic bombing

Whereas from World War II to modern day, Close Air Support missions carried out by variety of aircraft – perhaps most famous being WW2 German Stuka dive-bomber and modern A10 Close Air Support plane – were very effective at winning the wars, strategic bombing missions were a failure.

It can be safely said that Germans lost World War 2 due to spending too much on strategic bombers, and too less on Stukas. Despite the fact that one multi-engined bomber cost as much as five Stukas, five times more bombers were produced than Stukas – out of 114 000 aircraft produced by Germany in World War 2, 25 000 were heavy bombers, but only 4 900 were Stukas. If investment in heavy bombers had been transferred to Stukas, 130 000 Stukas would have been produced.

At Dunkirk, RAF lost 60 aircraft, mostly fighters – Luftwaffe lost 240, mostly heavy bombers. And while British shipping took a fearful beating – 6 destroyers lost, 23 warships damaged, 230 smaller ships and boats were lost – losses were caused primarily by Stukas.

Meanwhile, Allied strategic bombing failed to do as much as scratch on German war production – while in beginning of 1940, monthly production figure for Me-109 was 125, it was 2 500 in autumn of 1944. If that figure had been reached in 1940, Battle for Britain would have taken completely different course.

During German attack on Russia, strategic bombers failed to do anything except consuming scarce fuel. Strategic bombers were part of Soviet retaliation on attack – Me-109s shot down 179 of these. Meanwhile, only 300 Stukas were present to cover entire front – utterly understrength when compared to what was required to exploit numerous opportunities for turkey shoots that disorganized Red Army presented during its wild retreat. It is safe to say that Stukas could have won the war in the Eastern Front for Germany – but they were not given enough attention.

During 1941, Luftwaffe had lost 1798 heavy bombers from the beginning number of 1339. Stuka losses were 366 from the beginning number of 456. Also, during same year, several Stuka raids sank Soviet battleship “Marat”. The cost of all 4 900 Stukas produced during 10-year period was cca 25 million USD – about same as the battleship. Meanwhile, British sent 299 heavy bomber attacks against German ships “Gneiseau”, “Scharnhorst” and “Prinz Eugen”, which were in harbour right over the Channel. 299 attacks and 8 000 sorties later, they accomplished nothing, aside from losing 43 bombers (and no fighters) and 247 men. When ships moved in 1942, British sent heavy bombers to stop them, losing 60 aircraft and 345 airmen. Meanwhile, two highest-scoring Stuka pilots on the Eastern front had a score of 518 and cca 300 tank kills, respectively.

Similarly, V-1 and V-2 missiles achieved close to nothing – and 6 000 V2s equaled cost of 48 000 tanks (it should also be noted that Germany produced a total of 29 000 tanks during entire war) or 24 000 fighter planes.

In Great Britain, sir Arthur Harris was convinced that his bombers could kill enough German civilians to force Germany to capitulate. It did not work – not only losses in heavy bombers during 1942 totaled 1402 heavy bombers (while total number of heavy bombers in service during same year never went above 500), but it did not achieve any effect – German war production soared.

During First Gulf War, high-altitude bombing by B-52s and F-16s against dug-in Iraqi forces was as ineffective as above-discussed strategic bombing campaigns. 300 high-altitude sorties were flown daily by F16s, without effect. On the other hand, two A10s and single AC130 demolished Iraqi convoy moving towards Saudi city of Khafji – 58 out of 71 targets were destroyed.

In Kosovo, 78-day strategic bombing by NATO against Serbia achieved nothing.

In Second Gulf War, “Shock and Awe” 10-day strategic bombing campaign achieved nothing. Saddam’s regime toppled 21 days after beginning of ground invasion.

Tactical analysis

BVR combat

Since development of first BVR weapons, each new generation of fighters would make someone declare that “dogfighting is a thing of past”. Invariably, they have been wrong. In 1960, F4 Phantom was designed without gun – and then Vietnam happened.

US went into Vietnam relying on a AIM-7 Sparrow radar-guided missile. Pre-war estimated Pk was 0,7 – Pk demonstrated in Vietnam was 0,08. Current AIM-120 has demonstrated Pk of 0,59 in combat do this date, with 17 missiles fired for 10 kills. However, that is misguiding.

Since advent of BVR missile until 2008, 588 air-to-air kills were claimed by BVR-equipped forces. 24 of these kills were by BVR missile. Before “AMRAAM era”, four out of 527 kills were by BVR missile. Since 1991, 20 out of 61 kills may have been done by BVR missile, while US itself has recorded ten AIM-120 kills. However, four were NOT from beyond visual range; Iraqi MiGs were fleeing and non-manouvering, Serb J-21 had no radar, as was the case with Army UH-60 (no radar, did not expect attack), while Serb Mig-29’s radars were inoperative; there was no ECM use by any victim, no victim had comparable BVR weapon, and fights involved numerical parity or US numerical superiority – in short, BVR missile Pk was 50% against “soft” targets. Also, 16 BVR missile kills in Desert Storm are far from sure – it says that “sixteen involved missiles that ‘were fired’ BVR”, meaning that these could have WVR kills prefaced with BVR shots that missed. Five BVR victories are confirmed, however – one at 16 nm (and at night), one at 8.5 nm (night) and three at 13 nm, which more than doubles number of BVR victories.

In Vietnam, Pk was 28% for gun, 15% for Sidewinder, 11% for Falcon, 8% for Sparrow, and essentially zero for Phoenix. Cost of expendables per kill was few hundred dollars for gun, 15 000 USD for Sidewinder, 90 000 USD for Falcon, 500 000 USD for Sparrow, and several millions for Phoenix. Overall cost for destroying enemy with BVR missiles – including training, and required ground support – has never been computed.

In Cold War era conflicts involving BVR missiles – Vietnam, Yom Kipuur, Bekaa Valley – 144 (27%) of kills were guns, 308 (58%) heat-seeking missiles, and 73 (14%) radar-guided missiles. Vast majority of radar-guided missile kills (69 out of 73, or 95%) were initiated and scored within visual range. In true BVR shots, only four out of 61 were successful, for a Pk of 6,6 %.

In Desert Storm itself, F15s Pk for Sidewinders was 67% as compared to Pk for BVR Sparrow of 34%. However, Iraqi planes did not take evasive actions or use ECM, while there was persistent AWACS availability on Coalition part – none of which can be counted at in any serious war.

Post-Desert Storm, there were 6 BVR shots fired by US during operation Southern Watch – all missed.

There are other examples of radar missile engagements being unreliable: USS Vincennes shot down what it thought was attacking enemy fighter, and downed Iranian airliner, while two F14s fired twice at intruding Lybian fighters, missing them at BVR with radar-guided Sparrows and shooting them down in visual range with a Sparrow and Sidewinder.

BVR combat cannot – for obvious reason – fulfill critical requirement of visual identification. IFF is unreliable – it can be copied by the enemy, and can be tracked; meaning that forces usually shut it down. As such, fighter planes have to close to visual range to visually identify target. Moreover, presence of air-air anti-radiation missiles, such as Russian R-27P, was shown to be able to force everyone to turn off radars – possibly including AWACS. Radar signal itself can be detected at far greater range than radar can detect target at – even when it is LPI – meaning that enemy has ample time to use countermeasures and/or maneuver away from incoming missile. Uplinks to AWACS can be jammed, and if AWACS is shot down/scared away, it means that some F22s, with far weaker uplinks, will have to act as spotters for other F22s.

While modern IRST can identify aircraft by using its silhouette, range for such identification is low (~40 km for PIRATE).

Moreover, F35 is far from stealthy; since shape is far more important than RAM, and F35 is far larger than F16, its RCS will be closer to that of F16 than that of F22.

WVR combat

In Desert Storm, US forces fired 48 WVR missiles, achieving 11 kills, for Pk of 0,23. However, historically, Pk for IR missiles was 0,15, and 0,308 for cannon. While F16s fired 36 Sidewinders and scored zero kills, at least 20 of launches were accidental, due to bad joystick ergonomy, which was later modified.

While missiles have become more reliable, countermeasures have advanced too; as such, while IR missiles may be aircraft’s main weapon, gun kill remains most reliable way of getting rid of enemy.

Effects of numbers

In WVR, numbers are usually decisive. F35, even more than F22, relies on a (flawed, as shown above) concept of decisive BVR engagement to compensate for larger numbers of enemy fighter planes it can be expected to engage – especially since it is proving to be anything but low cost counterpart to F22.

However, even in BVR, numbers do matter. Lanchester square criteria, which holds that qualitative advantage of outnumbered force has to be square of outnumbering force’s numerical advantage, is even more applicable for BVR combat than for WVR, due to lack of space constrains. Thus, due to Su-27s costing 30 million USD, as opposed to F22s 250 million, F22s would have to enjoy 70:1 qualitative advantage just to break even – which is extremely unlikely. Historically, 3:1 was usually a limit of when quality could no longer compensate for enemy’s quantitative advantage, in both BVR and WVR.

Superior numbers also saturate enemy with targets, and cause confusion. USAF itself has always depended on superior numbers to win air war.

F35s shortcomings in air combat

F35 is overweight and underpowered – with a wing loading of 446 kg/m^2 and thrust-to-weight ratio of 1,07 (at empty weight), it cannot hope to outmaneuver any modern fighter plane – even ancient MiG-21s, with wing loading of 308 kg/m^2 can outmaneuver it. Actually, F35’s wing loading is slightly worse than F105 Thunderchief.

Indeed, many fire safeties had to be removed to save weight.

Sukhoi fighters, which many countries which are member of the program want it to counter (UK will use far more capable Typhoons in AtA role, instead using F35 as self-defensible tactical bomber, which it is), are far more capable than F35 in air combat.

Number of different capabilities and electronical systems in airplane necessitates second crew member – luxury that no F35 variant can provide. Task saturation can, and often does, result in “close calls” and mishaps. Place for second crew member was not put in – due to vertical landing requirement. Airborne Air Controller missions also require second crew member – in F/A-18 D/F, that work is done by Weapons and Sensors Operator (WSO) in back seat.

While F-35 does have jammers, all that jammers do is to turn missile into unguided rocket; aircraft still has to have maneuverability to evade missile.

F35s shortcomings in WVR combat

F35 is, so much is obvious, designed as tactical bomber with limited capacity of self-defense. Its maximum G load is 7 – 9, depending on version (7 G for F35B, 7,5 for F35C and 9 for F35A), versus 9 which is standard for modern fighter planes. Last time 7 Gs were acceptable was Vietnam war. Its wing loading is high – 526 kg/m^2, worse than the famous F-105 “Lead Sled”, and thrust-to-weight ratio is 0,87, at loaded weight. At 50% fuel, with 2 Sidewinder missiles and 4 JAGM, F-35A would weight 17 858 kg, for a wing loading of 418 kg/m2 and thrust-to-weight ratio of 1,09. In same configuration with 100% fuel, it would weight 22 221 kg, for a wing loading of 520 kg/m2 and thrust-to-weight ratio of 0,88.

Worse, naval version – one rated at 7 Gs – has best turning capability due to lowest wing loading, as long as it doesn’t go fast enough that G limit does not limit its turning ability.

Its high wing and thrust loadings, as shown above, do not allow F35 to achieve maneuverability required for a modern front line fighter. It is double inferior – in both wing and thrust loading – to most modern fighter planes. It also does not have a bubble cockpit; pilot’s rearward visibility is literally zero, while its weapons, which require doors to open, do not offer it ability to perform dogfight-critical “snapshots” in order to shoot down enemy aircraft. It’s large frontal crossection does not allow it to achieve acceleration comparable to fourth generation aricraft, such as Rafale, Typhoon, Gripen or F16.

It is also very noisy and relatively large aircraft, making it very detectable at visual range.

F35s shortcomings in BVR combat

First, it is not stealthy at all. Stealth is measured against five signatures – infrared, sound, visual, and radar footprint as well as electronic emissions. Visual, by definition, is not important for BVR combat; but sound and infrared signature are impossible to lower enough for plane to be VLO, especially when supersonic. While it is not a shortcoming by itself, legacy fighters not even making any effort to lower it, it becomes one when coupled by its low numbers and maximum of two BVR missiles carried in VLO configuration – essentially necessitating use of 6 to 8 F35s to kill a single target (growth to four BVR missiles is planned, halving numbers given). On better note, F35 is equipped with IRST; however, it is optimized for ground attack.

While F35s only hope to survive air combat is to “launch and leave”, its maximum speed of Mach 1,6 means that most fighter planes in the world can easily overtake it and shoot it down – even if that means ejecting missiles. Also, it means that its BVR missiles won’t have very good kinematic performance.

Moreover, F35s stealth capability has been downgraded from VLO to LO, meaning its frontal RCS is roughly comparable to that of modern European 4,5 generation aircraft. Also, at ranges stealth is effective at, BVR missiles have already expended fuel and have extremely low Pk.

F35 shortcomings in ground attack missions

F35 is completely incapable of providing close air support. First, many major safety measures in regards to fire safety have been dropped due to increasing cost. Second, its high wing loading and high drag make it unable to slow down, and its lack of maneuverability, thin skin as well as fact that engine is literally surrounded by fuel – which is also used to cool down aircraft’s skin – coupled with lack of fire safety measures, make it extremely vulnerable, and unable to go low enough and slow enough to provide effective close air support.

Inability of fast jest to provide effective close support was graphically demonstrated when, in Afghanistan war, 2001, 30-man combined US/Afghan team was ambushed by 800 Talibans. Single B1B which was nearby tried to help, but couldn’t fly low and slow enough to reliably identify targets. Two A10s were sent – as soon as they opened fire with cannons, Taliban attack ceased, and A10s covered team for next 6 hours. (Taliban also tried to negotiate a release of some captured ANA members if US team was to call off A10 support).

As far as bombing is concerned, it can only carry two 907-kg bombs in its bomb bay – anything else, and it rapidly becomes non-stealthy.

Despite STOL/VTOL capability, F-35 can only fly from prepared concrete airfields, due to vulnerable engine.

Comparasion with other planes

“Fifth generation fighter” label has been coined as PR trick by Lockheed Martin. In fact, Lockheed Martin officials claim that fifth-generation fighter should have ALL following characteristics to qualify:

  • VLO

  • supercruise

  • supersonic performance focus

  • extreme agility

  • high-altitude ops

  • missile load-out for fighter performance

  • integrated sensor fusion

  • net-enabled ops

Eurofighter Typhoon lacks only VLO. Dassault Rafale also lacks supersonic performance focus, however, its supersonic performance is very good. F-35, on the other hand, lacks VLO, supercruise, supersonic performance focus, extreme agility, high-altitude ops, and missile load-out.

F16

F16 is far better fighter and bomber than F35. F16 does not carry weapons internally, allowing it to fire off shots quickly. Its cockpit visibility is far superior to that of F35; it has lower wing loading (431 vs 526 kg/m^2 loaded) and higher thrust-to-weight ratio (1,08 vs 0,87).

Cost issue is completely in favor of F16. Whereas F35 has unit flyaway cost of over 200 million USD, F16s unit flyaway cost is 60 million USD for latest model, easily giving it 10:3 advantage in numbers.

In Gulf War I, F16s flew 13 340 sorties, and had 3 confirmed losses to enemy action, 7 losses total; thus, loss rate was one plane per 4460 sorties for confirmed combat losses, or one plane per 1900 sorties for total losses – both far better than F117. In Kosovo war, one F16 was shot down out of 4500 sorties.

F16 was also designed to be able to operate from straight stretches of motorway if airfields were to be destroyed.

Moreover, while one F22 can fly only one sortie every three days, and F35 seems to be in similar vein, F16 managed to fly 7 – 9 sorties a day in Israeli service (in USAF one F16 usually flies 6 sorties per 5 days).

F35 is also four times louder than F16 (and twice louder than F-15), making it easier to detect by ground-based acoustic sensors, and presenting an environmental hazard.

Whereas est F-35s cost per hour of flight is 48 800 USD, F-16s cost 4 600 – 7 000 USD, depending on version.

F18

F18 is also better fighter and bomber than F35. Unlike F35, which can only carry two 900-kg bombs without becoming non-stealthy, F18 can carry a total of 6 200 kg of external ordnance and fuel. Also, it costs up to 57 million USD, enabling numerical advantage of 3,6 to 1, in essence being able to deliver 12 times more payload for same unit cost – and that without going into its superior sortie rate.

Its wing loading of 441 kg/m^2 and thrust-to-weight ratio of 0,96 (both for loaded) are superior to these of F35. Also, its cockpit design allows for rear visibility, unlike F35.

F-18 cost per flying hour ranges from 11 000 – 24 000 USD, and flyaway cost is 67 million USD per aircraft for E/F version.

Saab Gripen

Saab Gripen is probably the best dogfighter in the world – or it would be if it got F16-esque bubble canopy, although Saab tried to remedy the lack of rearward visibility by installing mirrors.

Its wing loading is 283 kg/m2 loaded, and thrust-to-weight ratio is 0,97 – both better than F35s. Moreover, its close-coupled canards allow it to achieve and maintain high AoA, thus giving it even tighter turns at subsonic speeds than its wing loading would indicate. Usage of external missile carriage and revolver cannon allows it to use split-second opportunities, which F35 cannot. To top all that, its flyaway cost is between 40 and 60 million USD. Gripen NG will also have thrust-to-weight ratio of 1,08, and even lower wing loading, as well as IRST.

A10

In over 8 000 daytime missions in Gulf War One, A10 suffered 3 losses to IR missiles – in other three cases, plane was hit but returned to base safely. Meanwhile, 83 % of A10s that were hit made a safe landing. In Gulf War and Kosovo campaigns, A10s flew 12 400 sorties while suffering 4 losses – a one loss per 3100 sorties, far less than F117, which had 1 loss per 1300 sorties.

In Afghanistan in 2001, 4-man US special ops team leading 26 ANA troops was ambushed by 800 Taliban. B1B bomber, sent to do “close support”, failed to achieve any effect. Team leader, sgt. Osmon, asked for A10s. Two A10s were sent – after A10s opened fire with their cannons, Taliban ceased attack and dispersed. A10s escorted team during entirety of next 6 hours, a trip that would have normally taken 2 hours.

This incident only serves to prove that F35 has no capacity whatsoever to perform Close Air Support missions – it is too vulnerable, so it cannot fly as low and as slow as CAS missions require it to fly; it does not have a required loiter time – inefficient aerodynamics, small wing and large weight necessitate both high speed and high fuel consumption for it to stay in the air; and it lacks armament required to perform such missions, such as specialized cannon like GAU-8 A-10 is equipped with. A10 is also slow enough, survivable enough and maneuverable enough to enable pilots to use binoculars and night vision googles to find and identify targets, often coupled with simple radio link to troops on ground, in keeping with KISS principle.

Rafale

Rafale is of aerodynamically unstable canard-delta configuration. It has wing loading of 307 kg/m^2, and thrust-to-weight ratio of 1,1, loaded. Moreover, its close-coupled canards provide additional boost to its maneuverability by allowing it to achieve higher angle of attack, and it is equipped with advanced IRST and weapons systems. Its price – 90,5 million USD flyaway, 145,7 million USD unit program cost for most expensive variant – also mean that it is also far superior design from strategic standpoint, easily providing 2:1 advantage for same price. It’s IRST has maximum range of 100 km against fighter-sized targets. Operating cost is 16 500 USD per hour.

F117

In Gulf War I, 42 F117s generated, at 0,7 sorties per day, less than 1300 sorties out of 33 000 flown, and made 2 000 laser-guided bomb attacks. Out of 15 SAM batteries in Baghdad reported attacked by F117s on first night, 13 continued to operate – these 15 strikes were also only strikes launched by F117s during war. In same night, 658 non-stealth aircraft also hit targets, with no losses whatsoever.

While F117s did have zero losses in the war, as opposed to 2 F16s, and 4 A10s lost, night was a much safer combat environment than day, and the F-117 flew only at night. Two squadrons of A-10s flew at least as many night sorties as the F-117. Their losses were the same as the F-117’s: zero. F-111Fs also flew at night and also had no losses.

The A-10s and the F-117s flew in both the first Gulf war and the next war in Kosovo in 1999. The day-flying A-10s suffered a total of four losses in both wars. The night-flying F-117s suffered two casualties, both to radar missiles in Kosovo. However, F117 suffered 1 loss per 1 300 sorties, as opposed to 1 loss per 3 100 sorties for A10 in Kosovo and First Gulf War (F117 has flown 2 600 sorties in both wars, compared to 12 400 for A10). Moreover, both F117s were hit by same SAM battery, whose commander was apparently only one to use the tactic of combining VHF radar with IR SAMs.

In Kosovo war, Serbs launched 845 radar-guided SAMs – 2 F117s and one F16 were hit, for effectiveness rate of 0,36 %.

B2

F35 will be far less capable bomber than B2. Unlike B2, which was designed for nighttime low-level penetration and similarly low-level bombing, F35, being designed for daytime operations, and having far higher wing loading (446 vs 329 kg/m^2) cannot fly as low and slow, making it unable to reliably hit small targets. F35 is also far smaller, and has shape reminiscent of legacy fighters, making it more vulnerable to VHF radars. Compared to B2, which can carry 80 230-kg GPS-guided bombs, F35 will, in stealth configuration, carry two 910 kg (A and C models) or two 450 kg (B model) weapons, and unlike B2, it cannot carry long-range air-to-surface standoff weapons.

While B2 is seven times as expensive as F35, it does not have to be built in so large numbers (necessitated by F35 being replacement for five different airframes) and is easily several times as effective as F35 in bombing role; its size and shape also make it, in theory, harder to detect by low frequency radars, albeit its RAM is useless against them. Downside of B2 is that it cannot defend itself if it is detected (by IRST, for example); and while F22s in service may be used to provide it, they will be detected by VHF radars.

However, above theorizing is made noot by reports that B2 “has radar that cannot distinguish a rain cloud from a mountainside, has not passed most of its basic tests and may not be nearly as stealthy as advertised”. While B2 is able to “hug” the ground to evade radar, legacy platforms can be equipped with same systems – and radar used for that type of flying can easily be detected (as proven in Vietnam, where several F111s were lost due to that radar). Also, like F22, it is vulnerable to rain – specifically, its stealth coating is.

Moreover, B2 carries only 4 times more payload than F16 despite costing – at 2.2 billion FY 1995 USD per plane – or 3,17 billion in FY 2010 USD – 52 times more. It is also maintenance-demanding, requiring environment-controlled hangars which exist only at Whiteman AFB – if these are destroyed, maintenance of B2 will be rendered impossible. To add injury to an insult, during entire Kosovo war, 21-plane, 66-billion USD B2 fleet delivered a meager one sortie per day. 715 A10s, bought for cost of 4 B2s, were procured, and 132 A10s sent to First Gulf War managed to generate over 200 sorties per day.

One more problem is that B2 has design lifespan of only 30 years – as such, it costs 8 300 USD per hour, regardless of whether it is flying or not.

Su-27 variants

All Su-27 variants are capable of defeating F35 in one-on-one combat, due to combination of IRST, RWR, and good maneuverability. Moreover, they are cheaper than F35 (Su-35 has estimated cost of 45 to 55 million USD, enabling them to outnumber it as much as four to one).

MiG-21

MiG-21PFM from first half of 1960-s has wing loading of 339 kg/m^2 and thrust-to-weight ratio of 0,79 at gross weight; MiG-21-93 has wing loading of 384 kg/m^2, and thrust-to-weight ratio of 0,8 at gross weight. As such, both fighters can outmaneuver F35, while F35 probably can outaccelerate them. However, both have advantage in that they don’t require weapon bays’ doors to open before firing a shot, and even ability of F35 to outaccelerate MiG-21 can be questioned, due to bad aerodynamical profile of former.

Aircraft comparision table

Thrust-to-weight ratio at 50% fuel:

F35A: 1,07, F35B: 1,04, F35C: 0,91

Typhoon: 1,35

Rafale: 1,3

Wing loading:

F105: 452 kg/m2 @ takeoff weight

F35A: 408 kg/m2 @ 50% fuel; 745 kg/m2 @ max takeoff weight

F35B: 416 kg/m2 @ 50% fuel; 639 kg/m2 @ max takeoff weight

F35C: 326 kg/m2 @ 50% fuel; 512 kg/m2 @ max takeoff weight

Typhoon: 262 kg/m2 @ 50% fuel; 459 kg/m2 @ max takeoff weight

Rafale C: 259 kg/m2 @ 50% fuel; 536 kg/m2 @ max takeoff weight

Rafale B: 265 kg/m2 @ 50% fuel;

Rafale M: 275 kg/m2 @ 50% fuel;

Counter-stealth technologies

Stealth versus classical radar

Su-27s radar performance has doubled over past 8 years, and by 2020 Flanker family radars will be able to detect VLO targets at over 46 kilometers. Also, US stealth planes fly mission with same radar jamming escorts that accompany legacy platforms.

During the Gulf War, the British Royal Navy infuriated the Pentagon by announcing that it had detected F-117 stealth fighters from 40 miles away with 1960s-era radar. The Iraqis used antiquated French ground radars during that conflict, and they, too, claimed to have detected F-117s. The General Accounting Office, Congress’ watchdog agency, tried to verify the Iraqi claim, but the Pentagon refused to turn over relevant data to GAO investigators.

Also, even modern VLO planes have to operate alongside jamming planes, such as EA-6B or EA-18, when performing ground attack, confirming that even legacy radars are far from useless against VLO planes.

Main way to reduce plane’s radar signature is shaping – stealth coating simply deals with last few percentages. Which means that F35 is going to blow its radar stealth as soon as it maneuvers; additionally, its stealth capability was far lower than that of F22 from get-go. Moreover, it was downrated from VLO to LO by US Defense Department (for reference, Eurofighter Typhoon and Dassault Rafale are LO from front).

Moreover, target RCS is determined by 1) power transmitted in direction of target, 2) amount of power that impacts the target and is reflected back, 3) amount of reflected power intercepted by radar antenna, and 4) lenght of time radar is pointed at target. While normal procedure was to slave IR sensor to radar, advent of IRST makes it possible to slave radar to it.

That is not only solution. In a series of tests at Edwards AFB in 2009, Lockheed Martin’s CATbird avionics testbed – a Boeing 737 that carries the F-35 Joint Strike Fighter’s entire avionics system – engaged a mixed force of F-22s and F-15s and was able to locate and jam F-22 radars, according to researchers. Raytheon X-band airborne AESA radar – in particular, those on upgraded F-15Cs stationed in Okinawa – can detect small, low-signature cruise missiles.

VHF radar

While VLO planes are optimized to defeat S- and X- -band radars, VHF radars offer a good counter-stealth characteristics.

Simply put, RCS varies with the wavelenght because wavelength is one of inputs that determines RCS area.

VHF radars have wavelengths in 1-3 meter range, meaning that key shapings of 19-meter-long, 13,5-meter-wide F22 are in heart of either resonance or Rayleigh scattering region. Same applies for F35.

Rayleigh scattering region is region where wavelength is larger than shaping features of target or target itself. In that region, only thing that matters for RCS is actual physical size of target itself.

Resonance occurs where shaping features are comparable in wavelength to radar, resulting in induced electrical charges over the skin of target, vastly increasing RCS.

However, their low resolution and resultant large size means they are limited to ground-based systems.

Russians and Chinese already have VHF radars, with resolution that may be good enough to send mid-flight update to SAMs. Also, it is physically impossible to design fighters that will be VLO in regards to both low power, high-frequency fighter radars, and high-power, low-frequency ground-based radars. Such radars can, according to some claims, detect fighter-sized VLO targets from distance of up to 330 kilometers (against bombers like B2, their performance will be worse, but such planes have their own shortcomings – namely, IR signature and sheer size). Manufacturers of Vostok E claim detection range against F117 as being 352 km in unjammed and 74 km in jammed environment.

Also, RAM coatings used in many stealth planes are physically limited in their ability to absorb electromagnetic energy; one of ways RCS reduction is achieved is active cancellation – as signal reaches surface of RAM, part of it is deflected back; other part will be refracted into airframe, and then deflected from it in exact opposite phase of first half, and signals will cancel each other on way back. However, thickness of RAM coating must be exactly half of radar’s frequency, meaning that it does not work against VHF radar for obvious reasons – no fighter plane in world can have skin over half a meter thick.

There is one detail that apparently confirms this: in 1991, there was a deep penetrating raid directed at destruction of VHF radar near Baghdad; radar, which may have alerted Saddam at first wave of stealth bombers approaching capital. Before US stealth bombers started flying missions, radar was destroyed in a special mission by helicopters. Also, during fighting in Kosovo, Yugoslav anti-air gunners downed one F117 with Russian anti-air missile whose technology dates back to 1964, simply by operating radar at unusually long wavelengths, allowing it to guide missile close enough to aircraft so as to allow missile’s IR targeting system to take over. Another F117 was hit and damaged same way, never to fly again.

These radars, being agile frequency-hopping designs, are very hard to jam; however, bandwidth available is still limited.

Also, while bombers like B2 may be able to accommodate complex absorbent structures, it is not so with fighters, which are simply too small.

Another benefit is power – while capacity of all radars for detecting VLO objects increases with greater raw output, it is easier to increase output of VHF radars.

It is also possible for VHF radar to track vortexes, wake and engine exhaust created by stealth planes.

Another advantage of low-frequency radars is the fact that they present poor target for anti-radiation weapons, making them harder to destroy. Moreover, new VHF radars are mobile – Nebo SVU can stow or deploy in 45 minutes, while new Vostok-E can do it in eight minutes.

IRST

All Su-27 variants, as well as most modern Western fighters, carry IRST as a part of their sensory suite. Russian OLS-35 is capable of tracking typical fighter target from head-on distance of 50 km, 90 km tail-on, with azimuth coverage of +-90 degrees, and +60/-15 degree elevation coverage.

Fighter supercruising at Mach 1,7 generates shock cone with stagnation temperature of 87 degrees Celsius, which will increase detection range to 55 km head-on. Not only that, but AMRAAM launch has large, unique thermal signature, which should allow detection of F22 and missile launch warning up to 93+ kilometers, while AMRAAM moving at Mach 4 could be detected at up to 83 kilometers. That is worsened by the fact that F35 cannot supercruise, therefore additionally increasing its IR signature by requiring afterburner.

Integrating Quantum Well Infrared Photodetector technology greatly increases performance – Eurofighter Typhoon already has one with unclassified detection range for subsonic head-on airborne targets of 90 kilometers (with real range being potentially far greater).

Infrared imaging systems (like Typhoon’s or Rafale’s) provide TV-like image of area being scanned, which translates into inherent ability to reject most false targets. Also, while older IRST systems had to be guided by the radar, newer ones can do initial detection themselves. Given that stealth planes themselves rely on passive detection in evading targets, using passive means in detecting them is logical response for fighter aircraft. Missiles themselves can use infrared imaging technology, locking on targets of appropriate shape.

While there are materials that can supress IR signature of a plane, most of these are highly reflective in regards to radar waves, thus making them unusable for stealth planes, and other ways of reducing IR signature are not very effective.

Moreover, these systems do not adress fact that air around aircraft is heating up too – whereas, as mentioned, shock cone created by supercruising aircraft is up to 87 degrees Celzius hot, air temperature outside is between 30 and 60 degrees Celzius below zero.

Moreover, Russian Flankers use IRST together with laser rangefinder to provide gun firing solution – althought that is redundant, considering that any modern radar can achieve lock on F22 at gun-fighting ranges. Historically, Soviet MiG-25s have been able to lock on SR-71 Blackbird from ranges of over 100 kilometers by using IRST. Fortunately, order to attack was never given.

IRST can also provide speed of target via Doppler shift detection – IR sensors used in astronomy can detect velocity of star down to 1 meter per second, whereas fighter travelling at Mach 1,1 moves at 374 meters per second. Laser ranger can also be used to determine range to target.

While F35s IRST has tracked ballistic missiles to ranges of 800 kilometers, that claim is misleading as ballistic missiles are extremely large, extremely fast and make no effort to hide their IR signature. In similar vein, Typhoon’s PIRATE has tracked planet Venus.

Passive radar

Passive radar does not send out signals, but only receive them. As such, it can use stealth plane’s own radar to detect it, as well as its IFF, uplink and/or any radio traffic sent out by the plane.

Also, it can (like Czech VERA-E) use radar, television, cellphone and other available signals of opportunity reflected off stealth craft to detect them. Since such signals are usually coming from all directions (except from above), stealth plane cannot control its position to present smallest return. EM noise in such bands is extensive enough for plane to leave a “hole” in data.

However, simply analyzing and storing such amount of data would require extreme processing power as well as memory size, and it is prone to false alarms. It is also very short-range system, due to amount of noise patterns being required to detect, map and store.

RWR

Similar in principle to passive radar, two RWR-equipped aircraft could use uplink to share data and triangulate position of radiating enemy aircraft.

Lidar

Infrared doppler LIDAR (Light Detection And Ranging; doppler LIDAR senses doppler shift in frequency) may be able to detect high altitude wake vortices of stealth aircraft. While atmospheric aerosoils are not sufficient for technique to work, exhaust particles as well as contrail ice particles improve detectability to point that aircraft may be detected from range well beyond 100 km; exhaust particles themselves allow for detection of up to 80 km.

Wake vortices are byproduct of generating lift, and are, as such, impossible to eliminate – aircraft wing uses more curved upper and less curved or straight lower surface to generate differences in speed between two airflows. As result, upper airflow is faster and as such generates lower pressure when compared to airflow below the wing, generating lift. That, however, has result of creating vortices behind the trailing edge of the wing.

Background scanning

In that mode, radar does not look for stealth plane itself; instead it looks for background behind stealth plane, in which case sensory return leaves a “hole” in data. However, that requires radar to be space-based; or, if stealth plane is forced to fly at very low altitude due to defence net, radar can be airborne too.

Another possibility is using surface-based radio installations to scan the sky at high apertures and with high sensitivity, such as with radio telescopes.

As it is known to radio-astronomers, radio signals reach surface uninterrupted even in daytime or bad weather; and since map of stars is well known, it can be assumed that any star not radiating is eclipsed by an object, such as stealth plane. And as with very sensitive radio-astronomical equipment, every part of sky is observed as being covered with stars. It is also doable by less sensitive detecting equipment, simply by serching for changes in intensity of stars.

Over-the-horizon radar

Over-the-horizon radars invariably operate in HF band, with frequencies around 10 Mhz and wavelengths of 30 meters, beacouse it is band in which atmospheric reflection is possible. Also, at that point, target will create some kind of resonance and shaping will be largely irrelevant, as will be RAM coating, as explained above.

However, lowering frequency of radar means that size of radar aperture has to grow in proportion to radar wavelength to maintain narrow beam and adequate resolution; other problem is that these bands are already filled with communications traffic, meaning that such radars are usually found in early-warning role over the sea.

Such systems are already in use by US, Australia (Jindalee), Russia and China.

Bistatic / multistatic radar

Since VLO characteristics are achieved primarly by shaping airframe to deflect radar waves in other direction than one they came from, and thus make it useless to classic systems. However, such signal can be picked by receiver in another position, and location of plane can be triangulated.

While every radar pulse must be uniquely identifiable, that feature is already present in modern Doppler pulse radars. What is more difficult is turning data into accurate position estimate, since radar return may arrive to transmitter from variety of directions, due to anomalous atmospheric propagation, signal distortion due to interference etc.

Acoustic detection

Planes are noisy, engines in particular but also airflow over surface. In former case, bafflers are added, while in latter, noise is reduced by shaping plane so as to be more streamlined. However, internal weapons bays, when opened, create a great amount of noise.

Ultra-wide band radar

UWB radar works by transmitting several wavelengths at once, in short pulses. However, there are problems: 1) it is more effective to transmit power in one pulse, 2) UWB antenna must work over factor of ten or more in wavelength, 3) it would offer numerous false clutter targets. In short, if, for example, UH frequency and VH frequency were used, such radar would combine UHF’s and VHF’s advantages AND disadvantages.

Also, it is very hard to make RAM that would be effective against multiple frequencies.

Cell phone network

Telephone calls between mobile phone masts can detect stealth planes with ease; mobile telephone calls bouncing between base stations produce a screen of radiation. When the aircraft fly through this screen they disrupt the phase pattern of the signals. The Roke Manor system uses receivers, shaped like television aerials, to detect distortions in the signals.

A network of aerials large enough to cover a battlefield can be packed in a Land Rover.

Using a laptop connected to the receiver network, soldiers on the ground can calculate the position of stealth aircraft with an accuracy of 10 metres with the aid of the GPS satellite navigation system.

IR illumination

IR illumination – famed “black light” of World War 2, used in Do 17Z-10 and Bf 110D-1/U1 night fighters – works on exact same principles as radar, with only difference being EM radiation’s wavelenght, which is in IR range.

Since it is active technique, it also betrays location of emitter, and thus cannot be relied on for regular use by combat aircraft – althought it can be fitted instead of radar – but can be used by air defense networks.

Detecting LPI radar

F35s, like F22s, radar uses frequency hopping to counter radar recievers. However, it can only use relatively low spread of frequencies, and can be detected by using spread-spectrum technology in RWRs.

Another way to hide radar signal is to include spread-spectrum technology; it is intended to reduce signature of radar signal and blend it into background noise. However, such radar still emits a signal that is 1 million to 10 million times greater than real-world background noise. It is relatively simple to build spread-spectrum passive receiver that can detect such radar at distance four times greater than radar’s own detection range.

There are other ways of making radar LPI: 1) make a signal so weak that RWR cannot detect it, and increase processing power, 2) narrow the radar beam and 3) have radar with far higher processing gain than RWR. Option one is impractical, and is only viable for few years, until newer RWR’s are avaliable, even assuming it is initially successfull. Option two does not affect target being “painted”, and option 3, closely connected to option one, is only, again, viable for few years.

Conclusion

F35 is overweight, overpriced, underperforming and unnecessary aircraft, terrible at everything it is supposed to do, and extremely expensive to operate and maintain. All missions that F35 is supposed to perform can be done more effectively and at lower cost by legacy aircraft, and as such, it would be better for US to scrap F35 until separate, non VLO replacements for F16, F18 and Harrier can be developed.

Export successes are no proof of aircraft’s capabilities: if country has done business with firm in past, it is more likely to go for that firm’s product. All countries that bought F-35s (Italy, Japan, Norway, etc.) are ex-F-16 users; similarly, India, which has a long history of using French products, including Mirage-2000, opted for Rafale instead of either Typhoon, Gripen, F-35, F-16 or F-18. Saudi Arabia, which has/had Tornadoes in its air force, opted for Eurofighter Typhoon.

Additions

RCS size vs detection range

Target – RCS size in m2 – relative detection range

Aircraft carrier – 100 000 – 1778

Cruiser – 10 000 – 1000

Large airliner or automobile – 100 – 1000

Medium airliner or bomber – 40 – 251

Large fighter – 6 – 157

Small fighter – 2 – 119

Man – 1 – 100

Conventional cruise missile – 0,5 – 84

Large bird – 0,05 – 47

Large insect – 0,001 – 18

Small bird – 0,00001 – 6

Small insect – 0,000001 – 3

F117 to VHF radar – 0,5 – 84

Effective range is calculated by formula (RCS1/RCS2) = (R1/R2)^4, where RCS = radar cross section, while R=range.

RAM coatings

RAM coatings can be dielectric or magnetic. Dielectric works by addition of carbon products which change electric properties, and is bulky and fragile, while magnetic one uses iron ferrites which dissipate and absorb radar waves, and are good against UHF radars.

Outside links

http://www.youtube.com/watch?v=UQB4W8C0rZI&

http://www.youtube.com/watch?v=BhGIglwmFB8&feature=relmfu

Further reading

F-22 analysis

Saab Gripen analysis

Eurofighter Typhoon analysis

Dassault Rafale analysis

Saab Gripen vs F-35

How the F-35 is destroying USAF (and other air forces)

Why F-35 cannot replace the Harrier

On F-35 export success

“Why we must continue to fund the F-35” rebuttal

F-35 and its troubles

F-35s air-to-air capability or lack thereof

How stealthy is the F-35

Actual F-35 unit cost

EDIT 22.5.2015.:

http://forum.baloogancampaign.com/viewtopic.php?f=1&t=152&sid=5903961d85cbcc31a481bf9ca914d793

I found this response to my article while looking at stats. I don’t feel like registering on forum, and in any case thread is several months old, so I’ll just post reply here in hope that it will clean up some questions to people who might read it.

“This can only be an approximation of lift, and fails in the case of non traditional wing and body geometry, like that which the F-35 uses. ”

F-35 and most other modern fighters (Rafale, Gripen, F-16…). But even so, wing “area” as measured accounts for most of the body lift, and remaining part is typically too small (no more than 10-15% of the wing area) to have a decisive impact on performance. It might change the outcome of comparing, say, F-16C and F-35A, but comparing Rafale and F-35A? Forget it. Further, Rafale has close coupled canards which can increase maximum wing lift by as much as 35% compared to what wing-body configuration alone can achieve, yet people rarely point this out. Considering this, difference between the F-35 and Rafale will be greater, not smaller, than what wing loading suggests. Complaint is valid, however, when comparing the F-35 with more traditional configurations such as the F-15, F-16, Mirage and Flankers.

“Furthermore, the wings on it aren’t that small at all, and the body isn’t that wide. Here are some comparison images, thanks to u/norouterospf200 on Reddit:”

Wing size is driven by aircraft’s weight. Absolute wing size doesn’t matter as much as wing loading. F-35A, a pre-weight growth aircraft, has worse wing loading than F-16C after all weight growth it undertook. Now, F-35 will not suffer as much weight growth as the F-16 did, but it is not a rosy picture.

Also, images used compare top view of the F-16 and front view of Rafale with the F-35. But F-35 is in Typhoon’s weight class, so both top and front view should use Typhoon for comparison.

“To compute a loading, these must be considered as lift surfaces, and thus the simple computation fails.”

Most of the body area is accounted for in wing area.

“The design of several components was radically altered after the aircraft was first built. One example is the removal of fueldraulic shutoff values, a change made to save weight after testing revealed that additional systems had to be added. He criticizes the F-35 for not identifying issues through flight testing, then criticises it when they identify issues through flight testing.”

Bullshit by the bucket. I’m not criticizing using flight testing to find out issues, I’m criticizing decision to cut on flight testing because “computer models, har har har” and usage of Low Rate Initial Production to saddle USAF with few hundred F-35s before design has been finalized and issues fixed.

“So, the author would rather the F-35 go to full rate production immediately?”

No, I would have no production at all until testing has been finished. Is thinking really that hard?

“LRIP is to allow the F-35’s design to change as flaws are identified and production processes are improved, without having to modify gigantic fleets of aircraft.”

Incorrect. That is what pre-serial production testing with operational prototypes (that is, post-development aircraft used to test the finalized design) is for. Five to ten production-version aircraft is quite enough for that, no need to saddle military with dozens of flawed LRIP prototypes sold as production aircraft.

In fact, specific purpose of LRIP is to increase profits of contractors by increasing number of aircraft to be modified.

“Which is why the aircraft was in low rate production, so that issues wouldn’t have to be fixed on many many more aircraft.”

And it would have costed far less if it were discovered on production-model prototypes than on LRIP aircraft.

“The most recent LRIP costs were $106 million for an F-35A.”

Without engine.

BTW, I really like how he thinks that I should have used figure from the article written two years after I have finished my article. I didn’t know I was to be aware of the articles that haven’t been written yet. This time travel stuff really must be easy; I’d like to learn it, if possible?

“One from Bill Sweetman of all people is that F-35A costs $31 thousand and hour, and the program estimates that the aircraft will end up costing approximately $24 thousand per flight hour For context, the F-16 costs $22 thousand/flight hour.”

Time travel again. RE: F-16, he is comparing apples to oranges here. F-16 operating cost includes base maintenance as well, direct operating cost is 7.000 USD for the F-16 and estimated at cca 20.000 USD for the F-35.

“The USAF is buying 1,763 F-35As.”

Is hoping to buy. Unfortunately, that number is science fiction at best, pure fantasy at worst.

“As such, the USAF will have to deal with a deficit of negative 518 aircraft.”

PR bullshit at its finest. Also, F-35 is expected to replace F-15 as well, not just the F-16, since the F-22 numbers were cut.

“on twin engined medium bombers.”

Which were used for strategic bombing. Ergo, they were strategic bombers.

Heavy bomber =/= strategic bomber.

“A number of other points are also totally unresolved – the Stuka was outdated by 1941”

And had far more capable replacement in the pipeline, one that was never built in susbstantial numbers.

“the equivalent number of tanks weren’t logistically possible to make”

Even 10.000 extra tanks would have been a huge boon.

“Furthermore, do you want to know how many gun kills there have been air to air since (and including) desert storm? 2 – both made by A-10s against Mi-8s. Yes, they’re helicopters.”

Yes, because shooting down nonmaneuvering POS with no RWR, no MAWS, no IRST, no EW/ECM suite, and a pilot who’s barely able to take it off the ground is same as shooting down a maneuvering 4th generation fighter. </sarcasm>

“Clearly, F-16C was an unmitigated failure.”

F-16 was designed as an air superiority fighter, and BTW there was F-15E to take over such tasks. F-18 also has a variant with second crewmember.

“and is not noticeably noisier, either.”

Competition being the F-15?

“Additionally, the F-35 has substantial IR plume reduction technology built in, contrary to his assertion.”

Which is only relevant when aircraft is cruising at low speeds and low altitudes. High up where air superiority fighters operate, it is nothing more than trying to hide a bull elephant behind a laptop.

“You know, I would have thought that there was another system called EO-DAS that was specifically designed for air to air use, in addition to the EOTS sniper pod equivalent.”

EO-DAS is a WVR MAWS, same as Rafale’s DDM NG. It has no BVR targeting capability.

“He carefully ignores the fact that the internal bays let it fly at mach 1.6 while carrying much more fuel, forcing most pursuers to RTB before they can catch it.”

Most pursuers can fly at Mach 2,0 with missiles and with throttle set at less than 100%.

“However, stealth lets you get closer than would otherwise be possible, increasing Pk proportionately. ”

Not if the enemy has IRST. In IR spectrum F-35 is as stealthy as a drunken elephant in a porculan store.

“Irrelevant at altitude – the F-35 simply won’t need to take AAA or missile damage, because it flies above their operational altitudes and thanks to EOTS can deliver munitions effectively from that height.”

And kill very troops it is trying to save.

“Nice – making 2000lbs sound smaller by converting to metric for no reason whatsoever.”

Weight stays the same, and in the cause he didn’t notice, most of the world uses metric system. World does not consist solely of United States and United Kingdom.

Advertisements

Posted in Uncategorized | Tagged: , , , | 39 Comments »

F-22 Analysis

Posted by Picard578 on October 7, 2012

 Program history and military-industrial complex

F22 program is a prime example of bad management – large developmental and production costs meant reduction in number of planes procured; that, in turn, increased per-aircraft cost even more, and led to further cuts. Result was that original number of airframes was cut from 750 to 680 during H. W. Bush’ administration. In 1993-94, Clinton Administration cut number further, to 442 planes; 1997 Quadrennial Defense Review cut number to 339 aircraft – about three wings worth, althought it did leave option of buying two more wings if air-to-ground capability was introduced into F22. In 2002, there was another attempt to cut numbers further, but it did not pass, but in 2003, number was cut to 279, and in 2005 to 178 aircraft. Later, four aircraft were added to procurement plan.

In 1990s, Air Force cancelled program to develop multi-role replacement for F16, and, along with the navy, begun a new effort – Joint Advanced Strike Technology program, or JAST, which led to development of F35 Joint Strike Fighter. Marine Corps also joined in.

In December 2010, Program Budget Directive, pushed by Rumsfeld, slashed 10 billion USD from F22 procurement, leaving it at anemic levels of only 183 planes, number later raised to 187.

Here is how number of F22s to be procured changed over time:

1986 – 750 F22s

1991 – 648

1993 – 442

1997 – 339

2003 – 279

2005 – 178

Lt. Gen. Daniel Darnell estimated that, by 2024, USAF will be short of its 2250 fighters requirement by some 800 aircraft (it must be noted that US policy had its military ready for two major theater wars – however, it is unlikely that either Russia or India will join China in the even of US-China far; actually, opposite is far more likely, especially in case of India). Problem is even worse since air superiority is crucial element of all US military plans.

Major problem was abandonment of competetive prototyping policy introduced with F16 program, where designers would build full-technology, combat-capable prototypes based on skeleton requirements, test them, redesign and fix what needed, and then test them again, meaning that bugs were being discovered during production; same mistake is being repeated with F35. Prototype was tested, but it had little in common to finished plane – it did not have stealth skin, and was lighter than finished F22. Even shape was very different, and there was no demonstrative dogfight – in Pentagon, it was called “paint job with shape of F22”. Prototypes were selected in 1986, and flyoff between YF-22 and YF-23 was in 1990, and after YF-22 was selected, it went right back to the drawing table, and was heavily redesigned – F22 has nothing except shape in common with YF-22. For example, loaded weight was increased from 22 680 kg to 29 300 kg. Also, low-level production made it difficult to cancel outright, problem increased by fact that main goal of F22 program was to get money to contractors. Production also started in 1997, despite the fact that, by then, less than 4% of testing had been complete.

Capabilities also changed – in 2002, limited ground attack capacity was added, earning it designation of F/A-22, which was in 2005 changed to F-22A.

Whereas F15 entered service 5 years after development started, F22 waited full 24 years. One of reasons for that is permanent war economy in the US, which caused a merger of previously separate government and corporate managements. That has caused a proliferation of useless projects, whose only purpose is to make money for contractors, sub-contractors and sub-sub-contractors.

However, military-industrial complex does have support in United States due to number of jobs it creates. F22 project itself was divided among 1 150 subcontractors in 43 states and Puerto Rico, employing 15 000 people, for precisely that reason – to make it difficult to get rid of. When accounted for local economies, 160 000 jobs were put at risk. Same trick was tried with Nike-Zeus missile defense program, and failed.

From 1990 to 2000, US Government spent 2 956 billion USD on the Department of Defense. In 2002, 35 million people do not have secure supply of food due to living in poverty, 1,4 million more than in 2001, and 18 000 out of over 40 million people without health insurance died due to lack of treatment. Two thirds of all public schools have troublesome environmental conditions.

Cost of Vietnam war was 676 billion USD. Current US military budget draws 10 % of US GNP. Actually, in 1952 – which saw highest level of defense spending during Cold War – US defense budget was 589 billion in FY2008 USD. In 2008, it was 670 billion USD. And these figures are based on Pentagon’s own data, and therefore lowered, as you will see below. CIAs 2007 World Factbook estimated 400 billion USD defense spending for rest of the world combined. In 2008, China and Russia had defense budgets of 81 and 21 billion USD, respectively. In 2010, number was 178 billion USD for China; however, as with US 500-billion-USD number, both numbers for 2008 included “base” spending only.

Real US defense spending in 2010:

  • 534 billion “base” spending
  • 6 billion “mandatory” appropriations (mostly personell-related expenses)
  • 130 billion for financing war in Iraq and Afghanistan
  • 22 billion for nuclear weapons (to Department of Energy)
  • 106 billion to Department of Veterans
  • 43 billion to Department of Homeland Security
  • 49 billion for UN peacekeeping operations, aid to Iraq and Afghanistan and gifts to Israel plus other costs of State Department
  • 28 billion to Department of Treasury, to help pay for military retirement
  • 57 billion to pay for Pentagon’s share of interest on debt

Additions to the flow of capital funds from the Pentagon are welcomed. One example is the pulley puller for the F-16 fighter – essentially a steel bar two inches in length with three screws tapped in. In 1984, this small item was sold to the DoD by General Dynamics for $8,832 each. If the same equipment were custom ordered in a private shop it would cost only $25.

It is typical that weapons cost three times or more than initial cost estimates. F22s flyaway cost has increased from 35 million USD originally projected – 60 million in FY 2009 USD – to 250 million USD, or 412% of initial estimated cost. One of causes are misrepresentations of costs – as John Hamre, Pentagon controller from 1993 to 1997 said, military-industrial complex knew that plane would cost more than projected, but costs were misrepresented at Capitol Hill in order to secure the project. Policy of cost misrepresentations is still in effect – more about it below.

Another telling fact is that, between 2001 and 2005, 16 out of 17 major weapons systems did not meet required specifications – not one was stopped, or delayed in production, as result.

US, with its permanent war economy, is basically a militarized state capitalism..

One part of it is administrative staff. French designed and built the Mirage III with a total engineering staff of fifty design draftsmen. The Air Force’s F-15 Program Office alone had a staff of over 240, just to monitor the people doing the work.

As a result, US budget is larger than that of rest of the world combined. Over 27 000 military contractors are evading taxes and still continue to win new business from Pentagon, owing an estimated 3 billion USD at end of 2002 fiscal year. It is made worse by fact that only things that limit cost increases are external – US Congress, Government and taxpayers. Current US military spending per year is, as seen above, around 1 trillion USD.

During 2002, Boeing had received $19.6 billion in government contracts. In support of such results, the Boeing management spent $3.8 million for lobbying of various sorts and made campaign contributions to members of Congress amounting to $1.7 million.

Military itself is penalized by receiving unreliable equipment that is too complex, requiring hard-to-find skilled maintenance talent, and prone to malfunction. In 2010, there have been claims that Chinese shot down F22 with a laser; most likely in order to fund more research into exotic weapons (YF-1984?). Another possibility is that US is also pressurizing China into revaluing its currency, or simple propaganda as a goal of racheting up Chinese fear factor, as it was doing in last decade or so. Reason it became popular is due to all the hype F22 received.

Moreover, US wants to sell F22 to other coutries, and does it with other weapons systems – effect it creates is that US is in constant arms race with itself. Meanwhile, money expended on hardware means that US pilots’ training is suffering.

One of main problems with US weapons manufacturers is that these corporations cannot convert to civilian production (as William Anders, General Dynamics’ CEO said in 1991 – “… most [weapons manufacturers] don’t bring a competitive advantage to non-defense business,” and “Frankly, sword makers don’t make good and affordable plowshares.”), and are constantly and consistently eating away scarce resources that still remain avaliable to other sectors. Two relatively small wars in Iraq and Afghanistan had put a cosiderable pressure on US military budget, even more than Vietnam war, while Military-industrial-Congressional complex grows in power and influence – exactly what President Eisenhower warned against in his farawell adress.

Cold War itself served as an excuse to keep money flowing into MICC. By 1991, it was so well established that shutting it down became nigh impossible; still, it began creating a series of wars and false dangers – Somalia, Bosnia, Kosovo, the first and second Gulf wars, Afghanistan, Yemen, Pakistan, the war on terror, etc. – to justify its continuing survival (going by some analyses, it is entirely probable that even 2001 attacks were orchestrated by elements inside US to justify a continuing stream of wars and ever-increasing defense budget, as well as reductions in personal freedoms. Even if that is not the case, however, attacks were still masterfully exploited in pushing for those goals).

It also should be noted that unit number reductions, contrary to what DoD apologetics say, are not a cause of a growing costs in either F22 or F35 – or most other US programs. Rather, they are a symptom, just like F22 itself is just a symptom of broblems in modern-day US – and, generally, Western – society; namely, that money and technology can solve any problem, and that people should not stay in way of profit.

F22 costs

F22 is, as it is obvious to everyone who knows something about it, very costly airplane to both produce and use. But, what are real numbers?

F22 is perhaps more famous for its perpetual increase in costs than for its hyped abilities. There are many resons for such increase, such as false cost estimates made by Lockheed Martin, reduced orders and problems with aircraft itself. Official numbers are 150 million USD as a flyaway cost, and 350 million USD as unit procurement cost. However, these numbers are outdated.

Unit and modernization costs

In 2011, one F22 had a flyaway cost of 250 million USD and unit procurement cost of 411,7 million USD per plane. In first half of 2012, it was 422 million USD per aircraft.

Developmental costs have increased due to many patch-ups (such as structural strenghtening of rear fuselage) and fixes. As for flyaway cost, full half of it goes on stealth coating – generally, it takes 30 minutes to make sure that single rivet is installed in accordance to stealth requirements – and just F22s fuselage midsection has around 60 000 rivets – and most of them are either exposed to radar, or in hard-to-get locations. Moreover, aircraft are not produced anymore – they are built, individually, like in a locomotive factory. (In World War 2, United States tanks were produced, on assembly line, like cars. German tanks were built in aforementioned fashion, which increased complexity of process, greatly reducing factories’ output).

Discrepancy between official and real costs are logical, considering that all DoD cost estimates are based on Lockheed Martin’s internal documentation – cost control is utterly nonexistent.

F22s electronics components are not federated – they are designed to work only with another component of same design, thus any electronics upgrade would see replacement of entire electronics system. Computer chips are already outdated – F22 uses 32 bit 25 MHz chips, that are outdated even by civilian market.

Maintenance and operating costs

F22 is supposed to replace F15 fleet, but operating costs of brand-new F22s are already greater than F15s – namely, F22’s operating cost was 63 929 USD per hour in 2010; compare that with operating cost 30 000 USD per hour for F15C, and F22s own 44 259 USD per hour operating cost in 2009. It did fall down to 61 000 USD per hour in 2012.

When we compare that to promises of Lockheed Martin about F22s lower operating costs when compared to F15, it becomes obvious, not only that Lockheed Martin cannot be trusted (that much already is obvious) but that military-industrial complex desperately wants to protect Cold War status quo, which allows them to get richer – by downplaying future consequences of current decisions, they can continue loading defense budget with even more costly and complex weapons.

Problems

Here, I will not put cost of most fixes until now – beacouse I don’t know it – but rather a list of technical problems F22 has encountered so far (some may have been fixed in meantime):

  • leaky fuselage access panels, leading to corrosion problems
    • four largest aluminium panels replaced by titanium ones; each titanium panel costs at least 50 000 USD
  • bad quality control
    • fatigue problems
      • aft boom
        • fixed by reinforcing it
    • structural quality problems
      • titanium booms connecting wings have structural failures that could result in loss of airplane; problem “solved” by increasing inspections over the life of the fleet, with expenses mostly paid by Air Force
      • 30 F22s were badly glued
    • defective VLO coating
        • Lockheed knowingly used defective coatings
      • cracks in airframe
      • small parts require frequent reglueing – and glue can take more than a day to dry
    • problems with life support systems
      • oxygen problems limited planes to maximum altitude of 7 600 meters, as opposed to official maximum altitude of 19 800 meters
      • in 2011, OBOGS failure meant that pilots were breathing a mixture of oxygen, anti-freeze, oil fumes and propane, and F22 fleet was grounded.
      • 2012 OBOGS problems apparently caused by OBOGS sucking evaporating steath coating along with air – many simptoms that both pilots and ground staff displayed are typical of neurotoxins

All of that, especially given large number of potentially safety-threatening problems, points towards conclusion that F22 was approved for production before it was ready for it, much like later F35. So far, three F22s have been lost – two in accidents, one due to faulty life support systems – leaving United States with 185 aircraft.

Strategical analysis

Effects of numbers

Effects of numbers are various. First, fewer planes means that these same planes have to do more tasks and fly more often, therefore accumulating flight ours faster and reaching designed structural life limit faster. Also, smaller force will attrite faster; more flight hours per plane will mean less time avaliable for proper maintenance as well as greater wear and tear put on planes, further reducing already limited numbers.

In combat, side capable of putting and sustaining greater number of planes in the air will be able to put a larger sustained pressure on the enemy. Until advent of F16 and F18, USAF and USN were constantly worried about being outnumbered – for a good reason. Yet, small numbers of F22 are now, somehow, desireable.

F22, even assuming all promises made by USAF and Lockheed Martin are actually true, will not have numbers to make impact. In that, it is similar to Me262 Sturmvogel, German jet fighter from World War 2. Like F22, it was designed as a technological wonder; and unlike F22, it actually used technology that was not used in any other fighter plane before it. Yet, it was defeated by superior numbers of Allied technologically inferior fighter planes. While it did cause some alarm, its ultimate effect on course of war was negligible.

F22s shortcomings – force size and quality

To stop aging of its fighter inventory, USAF should have had acquired 2500 fighter planes between 1998 and 2013. In contrast, only 187 F22s were produced, and even fewer F35s. Only low cost option is to restart production of F16 – for one F22, one can get four F16s; seven, if we go with F22s unit procurement cost.

Acquiring only 180 aircraft means that USAF will use 80 planes for training and home defense, 50 for European and 50 for Pacific theater. When these numbers are combined with low maintenance readiness, owing due to its complexity and stealth coating, it will reduce F22s operational avaliability and strategic impact to insignificance – in 2009, its avaliability was 55 – 60 %. It also had serious maintenance problems, such as corrosion. It could also fly on average 1,7 hours between critical (mission-endangering) failures, and from 2004 to 2008, its maintenance time per hour of flight increased from 20 to 34 hours, with stealth skin repairs accounting for more than half the maintenance time. In 2009, number was 30 hours of maintenance per hour of flight, while in 2011, F22 required 45 hours of maintenance for every hour in the air. In 2012, only 55,5% of all F-22s were avaliable at any given time.

As is obvious from this, and “Maintenance and operating costs” section, all F22s maintenance trends have been negative for years. Moreover, only 130 of these planes are combat-coded.

187 F22s in inventory can, at best, generate 60 combat sorties per day, which is pathetic number against any serious enemy – whereas F16s bought for same cost would generate 1000 combat sorties per day, F22s presence likely will not even be noticed in strategic sense. Number of sorties will also become even lower as combat attrition and increased maintenance take its tool. There is also fact that per-unit maintenance costs for new F22s are, as seen previously, far larger than those for 30-year-old F15s, and will increase as time passes.

Also, while simulators may be good for cockpit procedures training, they misrepresent reality of air combat; as such, F22s unreliability also harms pilots training.

(Note: Out of 187 F22s that have entered active service, 3 have crashed, bringing number down to 184. It is still not large enough change to cause major effect on numbers noted above. It is unknown to me wether all of crashed F22s were combat-coded)

Effects of training

As US commander in Gulf War said: “Had we exchanged our planes with the enemy, result would have been the same”. Even best hardware on planet will not help if pilots are undertrained – and F22 pilots are on way to become that, due to F22s high maintenance requirements. When Israeli Air Force swept Syrian MiGs from sky in invasion of Lebanon in 1982 with exchange ratio of 82-0, Israeli Chief of Staff made same comment.

Between 1970 and 1980, instructors at Navy Fighter Weapons School, who got 40 to 60 hours of air combat manouvering per month, used F5s to whip students, who got only 14 to 20 hours per month, in their “more capable” F4s, F14s and F15s. US pilots in Vietnam complained that 20 – 25 hours of training per month is inadequate. Currenly, F22 pilots get only 8 to 10 hours of flight training per month.

Israeli pilots in 1960s and 70s got 40 to 50 hours of flight training per month. US Congress, meanwhile, cut 400 million USD from pilot training in 2008, to help pay for F22s.

F22 shortcomings – other

One of shortcomings of F22 is very simple – it requires large, very visible runaways in order to even get into air. Not only such runaways will be prime target – and hardened shelters aren’t protection against new weapons, while concrete runaway can be easily disabled for a relatively long span of time – they are also in danger of “goal tending” – enemy aircraft, with larger fuel fraction and lower wing loading, can simply go ahead of returning F22 force and shoot them down while F22s are trying to land. And with low numbers of F22s, this danger is very real. In short, if air defenses of base are disabled or destroyed, a pair of biplanes with air to air missiles could hover near base and not let anyone take off.

Also, hardened shelters USAF uses can be penetrated by modern munitions designed specifically for that use.

In World War 2, last major war United States have fought, such airfield vandalism was always a danger – even when US had air superiority. So, how US solved it? It didn’t – it simply produced airplanes at faster rate than enemy could destroy them – one airplane per hour. F22s complex design, aside from making it very difficult to produce and maintain, also makes it very vulnerable. What on legacy fighters would be counted as cosmetic damage, can force costly repairs on F22 – stealth skin is prime offender.

Also, unlike most other aircraft, F22 is not designed to be upgraded over time. It might get new versions of old electronics, but nothing new – such as IRST, which it badly needs. As F22 is designed to rely on technology to overcome enemy, and not on airframe performance as F16 was, such lack of upgradeability will be especially painful.

Tactical analysis

BVR combat

Since development of first BVR weapons, each new generation of fighters would make someone declare that “dogfighting is a thing of past”. Invariably, they have been wrong. In 1960, F4 Phantom was designed without gun – and then Vietnam happened.

US went into Vietnam relying on a AIM-7 Sparrow radar-guided missile. Pre-war estimated Pk was 0,7 – Pk demonstrated in Vietnam was 0,08. Current AIM-120 has demonstrated Pk of 0,59 in combat do this date, with 17 missiles fired for 10 kills. However, that is misguiding.

Since advent of BVR missile until 2008, 588 air-to-air kills were claimed by BVR-equipped forces. 24 of these kills were by BVR missile. Before “AMRAAM era”, four out of 527 kills were by BVR missile. Since 1991, 20 out of 61 kills may have been done by BVR missile, while US itself has recorded ten AIM-120 kills. However, four were NOT from beyond visual range; Iraqi MiGs were fleeing and non-manouvering, Serb J-21 had no radar, as was the case with Army UH-60 (no radar, did not expect attack), while Serb Mig-29’s radars were inoperative; there was no ECM use by any victim, no victim had comparable BVR weapon, and fights involved numerical parity or US numerical superiority – in short, BVR missile Pk was 50% against “soft” (non maneuvering with no ECM or sensors) targets. Also, 16 BVR missile kills in Desert Storm are far from sure – it says that “sixteen involved missiles that ‘were fired’ BVR”, meaning that these could have WVR kills prefaced with BVR shots that missed. Five BVR victories are confirmed, however – one at 16 nm (and at night), one at 8.5 nm (night) and three at 13 nm, which more than doubles number of BVR victories; most kills were still within visual range.

In Vietnam, Pk was 28% for gun, 15% for Sidewinder, 11% for Falcon, 8% for Sparrow, and essentially zero for Phoenix. Cost of expendables per kill was few hundred dollars for gun, 15 000 USD for Sidewinder, 90 000 USD for Falcon, 500 000 USD for Sparrow, and several millions for Phoenix – costs here are given in 1970 dollars. Overall cost for destroying enemy with BVR missiles – including training, and required ground support – has never been computed.

AMRAAM itself costs 500 000 USD per missile, and USAF was forced stop buyng Sidewinders in order to afford AMRAAMs. In fact, towards end of UN military intervention in Bosnia, US military started to report shortages of BVR missiles required to equip its fighters.

In Cold War era conflicts involving BVR missiles – Vietnam, Yom Kipuur, Bekaa Valley – 144 (27%) of kills were guns, 308 (58%) heat-seeking missiles, and 73 (14%) radar-guided missiles. Vast majority of radar-guided missile kills (69 out of 73, or 95%) were initiated and scored within visual range. In true BVR shots, only four out of 61 were successful, for a Pk of 6,6 %, and all four were carefully staged outside of large engagements in order to prove BVR theory (two were in Vietnam, and two by Israeli Air Force after US pressured Israel into establishing BVR doctrine).

In Desert Storm itself, F15s Pk for Sidewinders was 67% as compared to Pk for BVR Sparrow of 34%. However, Iraqi planes did not take evasive actions or use ECM, while there was persistent AWACS avaliability on Coalition part – none of which can be counted at in any serious war.

Post-Desert Storm, there were 6 BVR shots fired by US during operation Southern Watch – all missed. As recently as Operation Iraqi Freedom, Allied aircraft were lost to friendly fire, despite usage of IFF systems, AWACS, NCTR and relatively orderly war.

There are other examples of radar missile engagements being unreliable: USS Vincennes shot down what it thought was attacking enemy fighter, and downed Iranian airliner, while two F14s fired twice at intruding Lybian fighters, missing them at BVR with radar-guided Sparrows and shooting them down in visual range with a Sparrow and Sidewinder.

BVR combat cannot – for obvious reason – fulfill critical requirement of visual identification. IFF is unreliable – it can be copied by the enemy, and can be tracked; meaning that forces usually shut it down. As such, fighter planes have to close to visual range to visually identify target. Moreover, presence of anti-air anti-radiation missiles, such as Russian R-27P, was shown to be able to force everyone to turn off radars – possibly including AWACS. Radar signal itself can be detected at far greater range than radar can detect target at – even when it is LPI – meaning that enemy has ample time to use countermeasures and/or maneuver away from incoming missile. Uplinks to AWACS can be jammed, and if AWACS is shot down/scared away, it means that some F22s, with far weaker uplinks, will have to act as spotters for other F22s.

While modern IRST can identify aircraft by using its silhouette, range for such identification is low (~40 km for PIRATE).

WVR combat

In Desert Storm, US forces fired 48 WVR missiles, achieving 11 kills, for Pk of 0,23. However, historically, Pk for IR missiles was 0,15, and 0,308 for cannon. While F16s fired 36 Sidewinders and scored zero kills, at least 20 of launches were accidental, due to bad joystick ergonomy, which was later modified.

While missiles have become more reliable, countermeasures have advanced too; as such, while IR missiles may be aircraft’s main weapon, gun kill remains most reliable way of getting rid of enemy.

Effects of numbers

In WVR, numbers are usually decisive. Thus, F22 relies on a (flawed, as shown above) concept of decisive BVR engagement to compensate for larger numbers of enemy fighter planes it can be expected to engage.

However, even in BVR, numbers do matter. Lanchester square criteria, which holds that qualitative advantage of outnumbered force has to be square of outnumbering force’s numerical advantage, is even more applicable for BVR combat than for WVR, due to lack of space constrains. Thus, due to Su-27s costing 30 million USD, as opposed to F22s 250 million, F22s would have to enjoy 70:1 qualitative advantage just to break even – which is extremely unlikely. Historically, 3:1 was usually a limit of when quality could no longer compensate for enemy’s quantitative advantage, in both BVR and WVR.

Superior numbers also saturate enemy with targets, and cause confusion. USAF itself has always depended on superior numbers to win air war.

In short, F22 supporters have to learn to count.

F22s shortcomings in air combat

For beginning, four major characteristics were not met – one, 26 per cent increase in weight has led to wing loading and thrust-to-weight ratio slightly inferior to those of F15C; meaning that, for reasons of physics, there was no increase in manouverability – from outstanding, F22s manouverability was reduced to ordinary, except when it comes to air show tricks, that invariably bleed off energy. Weight increase also led to decrease in fuel fraction, from 0.36 to 0.28, which is too low even for a supercruise fighter – fuel fractions of 0.28 and below yield subcruisers, 0.33 provides quasi-supercruiser and 0.35 and above gives combat-useful supercruise performance. Simply put, supercruise characteristic has failed – 50 year old F104 can match F22s supercruise radius, and F15C, to which F22s supercruise rainge is usually compared, is one of worst fighters in terms of supercruise range. This means that F22 has to rely on subsonic cruise in combat – and that despite the fact it was designed for supersonic cruise, therefore worsening its already bad aerodynamical performance. Stealth itself was not achieved because F22 is, due to its size, is very visible in visual, infrared and acoustic spectrum, and its radar can be sensed by advanced RWRs, as demonstrated by Eurofighter Typhoons at China Lake – or by anti-radiation missiles, which Russians have, and aren’t afraid to sell them. With regards to visual detection, F22 is some 25 to 30 per cent larger than F15, and can be detected visually from order of 10 miles, or 16 kilometers head on, or 25-35 nm (46 to 65 km) from side. Avionics system itself is outdated. Moreover, when cruising supersonically, loud sonic boom betrays its location.

Also, to fully exploit its stealth advantages, F22 has to remain passive, even with its LPI radar; due to its lack of IRST or other passive sensors (with exception of RWR, which only work if enemy uses radar), it is limited to being fed data by friendly aircraft, usually AWACS (while other fighters may do it, it is questionable they will be able to penetrate jamming). Such planes can be shot down, effectively forcing F22 to choose between radiating in EM spectrum or fighting blind when compared to IRST-equipped fighters. Moreover, stealthy aircraft are only stealthy at night, whereas air superiority is primarly daylight mission – and F22s large size means that it will be spotted first. Large size is partly because of requirements for radar stealth – shapes required for achieveing radar VLO are very volume-ineffective. It is also very visible to sensors not based on active radio emissions, such as IRST.

F22 is also supposed to fight at high altitudes, around 20 000 meters. At such altitudes, both IRST, IR missiles’ seekers and missiles themselves will have greatly increased range.

F22s shortcomings in WVR combat

In WVR combat, F22 is pretty much very observable fighter – it is very large, which does not serve purpose of stealth. As noted above, its wing loading is comparable to that of F15C, although, being unstable design, it will be more maneuverable. Also, usage of gun doors and weapons bays increase response time, making snapshots within brief optimal “windows” a wishful thinking. While it is superior to F15 and F35, it is inferior in manouverability to F16A, and is inferior in physical size to all current US fighters; as TopGun saying goes: “Largest target in the sky is always first one to die” – a fact proven by actual combat: most planes were shot down unaware, from the rear.

That fact has been proven in exercises – whenever “Red” aircraft entered visual range, F22 invariably died (so far, list of F22 WVR “killers” contains F16, F18. Eurofighter Typhoon and Dassault Rafale). Even thought in one such instance, F22 managed to “destroy” three F16s out of four, fight in question started in BVR; when last F16 got to WVR, F22 died – fact that it is the largest fighter in US inventory certainly helped.

Also, missiles have minimum weapons engagement zone; usually around a mile or little less, as missile’s warhead takes time to arm, and depending on missile’s g-capacity (AIM-9B has minimum range of 930 meters when fired from straight behind at sea level at Mach 0,8). Thus, gun is often only remaining option – option which, in F22s case, is unsatisfactory, due to usage of Gattling design in combination with gun doors; both of that mean that F22 is unable to perform crucial split-of-second shots, due to combination of gun spin-up time and requiring doors to open increase time between press on a trigger and first bullet leaving barrel to around a second – whereas, to score a kill and survive during mass dogfight, pilots would have to launch missiles quickly at multiple targets and then leave – tactic appropriately called “launch and leave”.

While missiles can perform 30-g manouvers, they move far faster than fighters, which means both increased turn diameter as well as increasing possibility of missile to miss target for no clear reason, even when target is not manouvering or using ECM. This, combined with probability of fighter simply running out of missiles – which is, with F22s low numbers, very likely – means that gun combat is far from outdated; and in it, F22 is handicapped.

Thrust vectoring itself is mostly useless for aerodynamically well-designed aircraft – which F22 is not, due to heavy tradeoffs required for stealth – in majority of combat scenarios. While thrust vectoring improves maneuverability in certain flight regimes – namely, it enables post-stall maneuvers, and improves maneuverability at a) very high speeds and very high altitudes (>12 000 meters), where air is too thin for classic control surfaces to be utilized efficiently (which is main reason for TVC in F22 and Eurofighter Typhoon, as they are designed primarly as high-speed, high-altitude BVR interceptors; furthermore, at supersonic speeds, aircraft becomes statically stable), and b) very low speeds (under 150 knots) and very low altitudes, where ait flow over control surfaces is not fast enough. These particular regimes of flight are either mostly useless (extreme altitude) or outright dangerous (low speed, post stall) in majority of combat scenarios – at low speed, aircraft is defensless against competent opponent, and its life span can be measured in seconds, while only a small part of air combat happens at high altitudes and speeds, given unreliability of IFF in combat. Moreover, extreme energy loss caused by use of thrust vectoring can leave even aircraft that has started from good energy state vulnerable to enemy missiles and gunfire after some time. In other flight regimes, TVC-equipped aircraft are no more maneuverable than traditional aircraft – or even less, in case of various canard configurations. Specifically, using TVC means that aircraft continues to fly in one direction while nose points in completely another, with tremendous loss of energy; and to turn, aircraft still requires excess lift from wings in order to pull it around. Moreover, it takes time for aircraft to start executing a turn, during which aircraft itself rotates, rear end of aircraft drops and aircraft itself sinks – a perfect opportunity for a gun shot. While it can be useful in one-on-one gunfights (which are generally carried out at low speeds, where TVC does improve maneuverability for a time, until loss of energy becomes too great) if pilot knows how to use it, it is far from perfect (it should be noted that even despite that, Rafale managed to have one win and 5 draws against F22 in exactly such situation).

While post-stall maneuvers look cool at exercises, they are dangerous in real combat as they leave plane vulnerable to enemy due to lack of energy required to evade missiles; therefore, only useful things that TVC adds are safety, by providing two more control surfaces; and engine efficiency, by allowing aircraft to position itself better relative to air flow, thus improving range and decreasing fuel usage – very important in peace time. F22, having 2D and not 3D TVC nozzles, may be lacking in former when compared to 3D TVC-equipped aircraft – although, as F15 has proven, loss of one engine doesn’t require TVC for compensation. TVC can also be used as a propaganda/marketing trick, to fool the gullible.

In short, thrust vectoring is dangerous for plane using it if pilot doesn’t know how to use it (requires lot of training) and does not entirely compensate for airplane’s size and weight – so you can forget the prospect of F22 outmaneuvering, say, Eurofighter Typhoon or Dassault Rafale, at any combat-useful speed. To turn at combat speed, aircraft still requires lift from wing – that is, low wing loading.

According to some sources, F-22 allegedly has sustained turn rate of 28 degrees, while other sources put it at 23-24 degrees per second. As 28 degree per second sustained was made by an USAF colonel who wasn’t even F-22 pilot, it most probably was a mistake – possibly intentional; thus, second figure is more reliable (28 degrees per second is probably instanteneous turn rate). For comparasion, Typhoon has instanteneous turn rate of over 30 degrees per second, and sustained turn rate of 23 degrees per second, and Rafale has instaneteneous turn rate of over 30 degrees per second, and sustained turn rate of 24 degrees per second. These figures, however, are most likely for corner speed; due to lack of energy aircraft faces at such speeds, turn rate figures presented here are, as opposed to wing loading and thrust-to-weight ratio figures, of questionable utility.

F22s shortcomings in BVR combat

First, short supercruise range due to small fuel fraction does not allow F22 to pursue enemy or reliably avoid being jumped and/or pusued itself. While F22s supercruise range is superior to F15C, which is easily the worst supercruiser in USAF, it will be inferior to aircraft with higher fuel fraction, better aerodynamics (Eurofighter Typhoon) or both (Dassault Rafale).

Second, it is not stealthy at all. Stealth is measured against five signatures – infrared, sound, visual, and radar footprint as well as electronic emissions. Visual, by definition, is not important for BVR combat; but sound and infrared signature are impossible to lower enough for plane to be VLO, especially when supersonic. While it is not a shortcoming by itself, legacy fighters not even making any effort to lower it, it becomes one when coupled by its low numbers and maximum of six BVR missiles carried in VLO configuration – essentially necessitating use of 2 F22s to kill a single target. And even if it was, it is not equipped with IRST (although it can be mounted), thus necessitating F22 to emit signals – radar (it is equipped with both UHF and VHF radar antennas, in addition to normal engagement radar) plus IFF or (jammable) uplink to another plane (with IFF) – to detect enemy, which defeats entire purpose of stealth, and allows enemy anti-radiation missiles to home in on F22s powerful radar.

That problem is worsened by the fact that all US fighters emit in area of 10 000 Mhz in order to get all-weather capability – meaning that enemy only has not to emit in that area in order to solve IFF problem. In combat, enemy equipped with ARMs can force everyone to shut down radars, returning combat squarely into visual range.

Meanwhile, US did make effort to develop ARM in 1969, but it was cancelled due to possibility of it threatening radar missile development as well as F15 and F14 programs. French are also selling advanced ARMs all over the Third World, meaning that US might find itself in a trouble in next war.

Moreover, as soon as F22 manouvers, it is going to blow its – already limited – radar stealth. It is only VLO within 20 degrees off the nose, and its reported radar signatures only take frontal aspect versus high-frequency radars into consideration.

In IR spectrum, F22 simply cannot hide, especially when supercruising – fighter moving at supersonic speeds generates shock cones of hot air; a feature impossible to hide to IRST.

It also seems (3) that AMRAAM does not even work in cold environment – exactly where F22 is supposed to carry out its interception missions. Also, at ranges stealth is effective at, BVR missiles have already expended fuel and have extremely low Pk.

To make matters worse, EW countermeasure suite can be as effective as stealth in BVR, as demonstrated when EF-18 “Growler” defeated F22 in one-on-one BVR engagement, and when IAF MiG-21 equipped with jamming equipment managed to get to merge with F-15 in exercises.

While datalinks are touted as allowing one F22 to do the targeting and another to launch BVR missile, mid-flight update can only be done by platform that launched the missile – a safety measure preventing enemy from hacking into uplink and sending missile back to fighter that launched it.

Comparasion with other fighters

“Fifth generation fighter” label has been coined as PR trick by Lockheed Martin. In fact, Lockheed Martin officials claim that fifth-generation fighter should have ALL following characteristics to qualify:

  • VLO
  • supercruise
  • supersonic performance focus
  • extreme agility
  • high-altitude ops
  • missile load-out for fighter performance
  • integrated sensor fusion
  • net-enabled ops

F-22 has all except net-enabled ops, and Eurofighter Typhoon lacks only VLO. Dassault Rafale also lacks supersonic performance focus, however, its supersonic performance is very good.

Su27

Su-27 family of planes are large planes with even larger radomes – Russian radar manufacturer Phazotron is developing a Flanker-sized powerful radar – Zhuk ASE – which will outclass every single radar in US inventory except for that of F22.

However, IRST carried by Flankers is far greater problem, as explained in “counter-stealth” section.

Su27 family of planes are also very manouverable, despite their size.

In 1992, Su27 could see F22 from 15 kilometers. In 2000-2008, Flanker family’s radar performance has doubled – meaning that by 2016, Flankers should be able to detect F22 from distance of 45 kilometers.

F15

As explained above, F15C is equal to slightly superior in regards to F22 in most basic characteristics: thrust-to-weight ratio, wing loading and fuel fraction. It is superior to F22 in rearward cockpit visibility, as well as fact that no gun doors and externally mounted missiles allow for split-of-second snap-shots critical for dogfight. Its similarity to F22 in dogfight was also acknowledged1 by its pilots to Everest Riccioni, retired USAF Colonel and member of Fighter Mafia.

F15 is also faster (Mach 2,5 vs Mach 2,2) and carries 940 rounds for its cannon, as opposed to 480 rounds for F22. Each F15 can also fly 1 sortie per day (USAF numbers, Israeli managed 3 – 5 sorties per day), as opposed to one sortie every 2-3 days for F22.

F16

F16 costs 60 million USD in plane, and has operating cost of 4 600 USD per hour. Whereas 180 F22s can only generate 60 combat sorties per day, F16s bought for same cost can generate 1728 combat sorties per day (number of combat sorties = aircraft for equal cost x sortie rate; latter is 1,2 for F16 and 0,7 for F22) if we use unit procurement costs, or 900 combat sorties if we use unit flyaway costs. (It should be noted that these are USAF numbers – surge numbers for F16s in Israeli service are far greater – 7 – 9 sorties a day).

Original version of F16 would cost 30 million USD per plane, when adjusted for inflation. It also had better manouverability – while F22 weights almost 30 000 kg – even more, when latest fixes are counted – F16 weights bit over 18 000 kg. Original versions were half that weight.

Eurofighter Typhoon

Eurofighter Typhoon is another plane famous for its cost overruns. Currently, Tranche 2 Typhoon has unit procurement cost of 142 million USD per plane, and unit flyaway cost of 118 million USD per plane. Tranche 3’s costs are 199 million USD per plane unit procurement, and 122 million USD per plane flyaway cost. Its operating cost is 18 000 USD per hour.

Typhoon’s thrust-to-weight ratio is 1,14, while its wing loading is 312 kg/m2. F22s thrust-to-weight ratio is 1,09, while its wing loading is 375 kg/m2 (all figures for loaded aircraft). At 50% fuel, with 2 Sidewinders and 4 AMRAAM, Typhoon’s TWR will be 1,28 and wing loading 277 kg/m2; F22s values are 1,28 and 318,8 kg/m2. (weight 24 882,6 kg)

Also, both F22 and Eurofighter Typhoon have top speeds around Mach 2 (Mach 2 for Typhoon and Mach 2 – 2,2 for F22, as it has fixed inlet); F22 also can achieve Mach 1,5 while supercruising in AtA configuration, while Typhoon is limited to Mach 1,21 supercruise in AtA configuration (2 WVR, 4 BVR missiles + center drop tank). Clean-configured, numbers are Mach 1,7 for F22 and Mach 1,5 for EFT. Both can reach altitude above 50 000 ft (15 000 meters).

There are reports that Typhoons engaged and defeated F22s in a mock dogfights at China Lake; with Typhoon’s DASS suite allowing it to close range to F22 and enter a dogfight in which Typhoon was superior, due to its better manouverability – as all wins Typhoon had over F22 were by missiles, not by gun, dogfights were likely carried out at high subsonic speeds where F22s TVC is useless. Similar thing repeated itself at Farborough air show; however, Typhoons that fought with F22s at latter exercise were Luftwaffe ones, which were not equipped with IRST or HEA helmet which permits off-bore shots and thus had to point nose at F22 to get a “kill” (F22s themselves were not equipped with helmet mounted cueing system either). While some people claim that F22s were handicapped by pilots not having vests of their anti-G suits, that claim is untrue – order to remove vests due to oxygen problems came only a week after sorties between Typhoons and F22s were flown, with highly demanding maneuvers undoubtably used by F-22s when fighting Typhoons possibly highlighting problems with vests. As for Typhoons, while they were “slicked off as much as possible”, that probably means they did not have missiles or fuel tanks – Typhoon’s clean configuration is with 2 IR and 4 radar guided missiles.

In general, Typhoon has demonstrated better sustained and instanteneous turn rate than F22 at subsonic speeds. Addition of LERX has potential to improve its already excellent turn rates by 10%, and TVC, when added, will give additional boost to its low-speed maneuverability, as well as to its supersonic maneuverability. It will also allow aircraft to get itself out of stall. At supersonic speeds, both aircraft can pull up to 7 G.

Typhoon’s PIRATE IRST has shown ability to track stealth aircraft just by heat generated by stealth airplane’s skin friction (it tracked B2 stealth bomber at air shows from over 40 nm (74 km) (1) ). Maximum range is claimed (2) to be up to 150 kilometers (50 to 80 km for sure), which fits wth my calaculation of its range against tail-on subsonic targets in next paragraph. It also can identify targets at over 40 kilometers.

(Now for little calculation: Typhoon’s PIRATE can detect subsonic head on airborne targets from 90 kilometers. Russian OLS-35 can do the same from 50 kilometers (tail-on, range is 90 kilometers; so PIRATE’s range in such situation is probably ~160 km, although this is a guess). Su-35 can also detect missile launch from 93+ km, and Mach 4 AMRAAM from 83 km – meaning that Typhoon should be able to do it from 167+ and 149 kilometers, respectively. AMRAAM at Mach 4 requires 1 minute 50 seconds to cover that distance. Meanwhile, unclassified range for F22s radar has range of 200-240 km against 1m2 target, and AIM-120D AMRAAM has range of 180 km. As Typhoon’s frontal RCS is 0,25 – 0,75 m2, it means that F22 can detect it from 141 – 223 km. Of course, Typhoon’s RWR will detect any radar transmission from far longer range, and as jammers of same generation generally shave off 2/3rds of radar range, it means that F22 will not be able to lock on to Typhoon until it is at disrance of 47 – 74 km when clean, or 67 – 80 kilometers if Typhoon is in air-to-air configuration. F-22s RCS should be between 0,0001 and 0,0014 m2, which means Typhoon’s CAPTOR radar, which has reported range of 185 km against 1m2 target, should be able to detect it from 18 to 35 kilometers.)

Interesting to note is that F22 has 8 internal and 4 external hardpoints, which give it total of 12 hardpoints – same as much smaller Typhoon (Typhoon technically has 13 hardpoints, but center one is reserved for fuel tank). Standard air superiority outfit is 6 AMRAAM + 6 ASRAAM, as compared to F22s 6 AMRAAM and 2 ASRAAM.

Moreover, it is planned for Typhoon’s AESA radar to have ability to detect enemy aircraft completely passively, by relying on radio emitters from outside; that way, it can detect even stealth aircraft from large distance.

Dassault Rafale

Dassault Rafale’s blended wing-fuselage design, relatively small size and light weight result in comparably low wing loading – even smaller than it can be calculated by simply dividing weight by wing area. Latter method results in wing loading of 306 kg/m2 and thrust-to-weight ratio of 1,1 at loaded weight. Its close-coupled canards also help it maintain lift at high angles of attack, as well as to create dynamic instability; however, its close-coupled canards improve maneuverability mostly at lower speeds and altitudes, similar to F22s thrust vectoring, meaning that it should have similar maneuverability to F22. (Rafale was also able to outmaneuver Typhoon at lower altitude, but higher up Typhoon had the advantage). At Al Dhafra, Rafale and F-22 fought six 1-vs-1 gun-only dogfights, which means that both Rafale’s close-coupled canards and F-22s TVC could be used to full effect due to slow speeds these engagements were likely fought at. Rafale won once, and remaining five engagements were draws. (4, last image. Both OSF and gun targeting data are clearly visible in upper set of photos, showing that Rafale was in position for a gun shot against F-22.)

Rafale is also capable of supercruise, and its relatively high fuel fraction in most versions (0,33 for C, 0,32 for B and 0,32 for M) as opposed to low fuel fractions of F22 and Eurofighter Typhoon (0,29 Typhoon, 0,28 F22) allow for greater persistence and range.

Rafale M costs 90,5 million USD flyaway, 145,7 million USD unit program cost. Operating cost is 16 500 USD per hour.

Counter-stealth technologies

Stealth versus classical radar

Su-27s radar performance has doubled over past 8 years, and by 2020 Flanker family radars will be able to detect VLO targets at over 46 kilometers. Also, US stealth planes fly mission with same radar jamming escorts that accompany legacy platforms.

During the Gulf War, the British Royal Navy infuriated the Pentagon by announcing that it had detected F-117 stealth fighters from 40 miles away with 1960s-era radar. The Iraqis used antiquated French groud radars during that conflict, and they, too, claimed to have detected F-117s. The General Accounting Office, Congress’ watchdog agency, tried to verify the Iraqi claim, but the Pentagon refused to turn over relevant data to GAO investigators.

Also, even modern VLO planes have to operate alongside jamming planes, such as EA-6B or EA-18, when performing ground attack, confirming that even legacy radars are far from useless against VLO planes.

Main way to reduce plane’s radar signature is shaping – stealth coating simply deals with last few percetages. Which means that F22 is going to blow its radar stealth as soon as it maneuvers, and it is physically impossible for airplane to present its reduced nose-on or side-on RCS to all radars.

Moreover, target RCS is determined by 1) power transmitted in direction of target, 2) amount of power that impacts the target and is reflected back, 3) amount of reflected power intercepted by radar antenna, and 4) lenght of time radar is pointed at target. While normal procedure was to slave IR sensor to radar, advent of IRST makes it possible to slave radar to it.

That is not only solution. In a series of tests at Edwards AFB in 2009, Lockheed Martin’s CATbird avionics testbed – a Boeing 737 that carries the F-35 Joint Strike Fighter’s entire avionics system – engaged a mixed force of F-22s and F-15s and was able to locate and jam F-22 radars, according to researchers. Raytheon X-band airborne AESA radar – in particular, those on upgraded F-15Cs stationed in Okinawa – can detect small, low-signature cruise missiles.

VHF radar

While VLO planes are optimized to defeat S- and X- -band radars, VHF radars offer a good counter-stealth characteristics.

Simply put, RCS varies with the wavelenght beacouse wavelength is one of inputs that determines RCS area.

VHF radars have wavelengths in 1-3 meter range, meaning that key shapings of 19-meter-long, 13,5-meter-wide F22 are in heart of either resonance or Rayleigh scattering region.

Rayleigh scattering regios is region where wavelength is larger than shaping features of target or target itself. In that region, only thing that matters for RCS is actual physical size of target itself.

Resonance occurs where shaping features are comparable in wavelength to radar, resulting in induced electrical charges over the skin of target, vastly increasing RCS.

However, their low resolution and resultant large size means they are limited to ground-based systems.

Russians and Chinese already have VHF radars, with resolution that may be good enough to send mid-flight update to SAMs. Also, it is physically impossible to design fighters that will be VLO in regards to both low power, high-frequency fighter radars, and high-power, low-frequency ground-based radars. Such radars can, according to some claims, detect fighter-sized VLO targets from distance of up to 330 kilometers (against bombers like B2, their performance will be worse, but such planes have their own shortcomings – namely, IR signature and sheer size). Manufacturers of Vostok E claim detection range against F117 as being 352 km in unjammed and 74 km in jammed environment.

Also, RAM coatings used in many stealth planes are physically limited in their ability to absorb electromagnetic energy; one of ways RCS reduction is achieved is active cancellation – as signal reaches surface of RAM, part of it is deflected back; other part will be refracted into airframe, and then deflected from it in exact opposite phase of first half, and signals will cancel each other on way back. However, thickness of RAM coating must be exactly half of radar’s frequency, meaning that it does not work against VHF radar for obvious reasons – no fighter plane in world can have skin over half a meter thick.

There is one detail that apparently confirms this: in 1991, there was a deep penetrating raid directed at destruction of VHF radar near Bagdad; radar, which may have alerted Saddam at first wave of stealth bombers approaching capital. Before US stealth bombers started flying missions, radar was destroyed in a special mission by helicopters. Also, during fighting in Kosovo, Yugoslav anti-air gunners downed F117 with Russian anti-air missile whose technology dates back to 1964, simply by operating radar at unusually long wavelengths, allowing it to guide missile close enough to aircraft so as to allow missile’s IR targeting system to take over. Another F117 was hit and damaged same way, never to fly again.

These radars, being agile frequency-hopping designs, are very hard to jam; however, bandwidth avaliable is still limited.

Also, while bombers like B2 may be able to accomodate complex absorbent structures, it is not so with fighters, which are simply too small.

Another benefit is power – while capacity of all radars for detecting VLO objects increases with greater raw output, it is easier to increase output of VHF radars.

It is also possible for VHF radar to track vortexes, wake and engine exhaust created by stealth planes.

Another advantage of low-frequency radars is the fact that they present poor target for anti-radiation weapons, making them harder to destory. Moreover, new VHF radars are mobile – Nebo SVU can stow or deploy in 45 minutes, while new Vostok-E can do it in eight minutes.

IRST

All Su-27 variants, as well as most modern Western fighters, carry IRST as a part of their sensory suite. Russian OLS-35 is capable of tracking typical non-afterburning fighter target from head-on distance of 50 km, 90 km tail-on, with azimuth coverage of +-90 degrees, and +60/-15 degree elevation coverage.

Fighter supercruising at Mach 1,7 generates shock cone with stagnation temperature of 87 degrees Celzius, which will increase detection range to 55 km head-on. Not only that, but AMRAAM launch has large, unique thermal signature, which should allow detection of F22 and missile launch warning up to 93+ kilometers, while AMRAAM moving at Mach 4 could be detected at up to 83 kilometers. Modern IRSTs are sensitive enough to detect missile release from its nose cone heating.

Integrating Quantum Well Infrared Photodetector technology greatly increases performance – Eurofighter Typhoon already has one with unclassified detection range for subsonic head-on airborne targets of 90 kilometers (with real range being potentially far greater).

Infrared imaging systems (like Typhoon’s or Rafale’s) provide TV-like image of area being scanned, which translates into inherent ability to reject most false targets. Also, while older IRST systems had to be guided by the radar, newer ones can do initial detection themselves. Given that stealth planes themselves rely on passive detection in evading targets, using passive means in detecting them is logical response for fighter aircraft. Missiles themselves can use infrared imaging technology, locking on targets of appropriate shape.

While there are materials that can supress IR signature of a plane, most of these are highly reflective in regards to radar waves, thus making them unusable for stealth planes, and other ways of reducing IR signature are not very effective. Moreover, these systems do not adress fact that air around aircraft is heating up too – whereas, as mentioned, shock cone created by supercruising aircraft is up to 87 degrees Celzius hot, air temperature outside is between 30 and 60 degrees Celzius below zero.

Moreover, Russian Flankers use IRST together with laser rangefinder to provide gun firing solution – althought that is redundant, considering that any modern radar can achieve lock on F22 at gun-fighting ranges. Historically, Soviet MiG-25s have been able to lock on SR-71 Blackbird from ranges of over 100 kilometers by using IRST. Fortunately, order to attack was never given.

IRST can also provide speed of target via Doppler shift detection – IR sensors used in astronomy can detect velocity of star down to 1 meter per second, whereas fighter travelling at Mach 1,1 moves at 374 meters per second. Laser ranger can also be used to determine range to target.

Passive radar

Passive radar does not send out signals, but only receive them. As such, it can use stealth plane’s own radar to detect it, as well as its IFF, uplink and/or any radio traffic sent out by the plane.

Also, it can (like Czech VERA-E) use radar, television, cellphone and other avaliable signals of opportunity reflected off stealth craft to detect them. Since such signals are usually coming from all directions (except from above), stealth plane cannot control its position to present smallest return. EM noise in such bands is extensive enough for plane to leave a “hole” in data.

However, simply analyzing and storing such amount of data would require extreme processing power as well as memory size, and it is prone to false alarms. It is also very short-range system, due to amount of noise patterns being required to detect, map and store.

RWR

Similar in principle to passive radar, two RWR-equipped aircraft could use uplink to share data and triangulate position of radiating enemy aircraft.

Lidar

Infrared doppler LIDAR (Light Detection And Ranging; doppler LIDAR senses doppler shift in frequency) may be able to detect high altitude wake vortices of stealth aircraft. While atmospheric aerosoils are not sufficient for technique to work, exhaust particles as well as contrail ice particles improve detectability to point that aircraft may be detected from range well beyond 100 km; exhaust particles themselves allow for detection of up to 80 km.

Wake vortices are byproduct of generating lift, and are, as such, impossible to eliminate – aircraft wing uses more curved upper and less curved or straight lower surface to generate differences in speed between two airflows. As result, upper airflow is faster and as such generates lower pressure when compared to airflow below the wing, generating lift. That, however, has result of creating vortices behind the trailing edge of the wing.

Background scanning

In that mode, radar does not look for stealth plane itself; instead it looks for background behind stealth plane, in which case sensory return leaves a “hole” in data. However, that requires radar to be space-based; or, if stealth plane is forced to fly at very low altitude due to defence net, radar can be airborne too.

Another possibility is using surface-based radio installations to scan the sky at high apertures and with high sensitivity, such as with radio telescopes.

As it is known to radio-astronomers, radio signals reach surface uninterrupted even in daytime or bad weather; and since map of stars is well known, it can be assumed that any star not radiating is eclipsed by an object, such as stealth plane. And as with very snsitive radio-astronomical equipment, every part of sky is observed as being covered with stars. It is also doable by less sensitive detecting equipment, simply by serching for changes in intensity of stars.

Over-the-horizon radar

Over-the-horizon radars invariably operate in HF band, with frequencies around 10 Mhz and wavelengths of 30 meters, beacouse it is band in which atmospheric reflection is possible. Also, at that point, target will create some kind of resonance and shaping will be largely irrelevant, as will be RAM coating, as explained above.

However, lowering frequency of radar means that size of radar aperture has to grow in proportion to radar wavelength to maintain narrow beam and adequate resolution; other problem is that these bands are already filled with communications traffic, meaning that such radars are usually found in early-warning role over the sea.

Such systems are already in use by US, Australia (Jindalee), Russia and China.

Bistatic / multistatic radar

Since VLO characteristics are achieved primarly by shaping airframe to deflect radar waves in other direction than one they came from, and thus make it useless to classic systems. However, such signal can be picked by receiver in another position, and location of plane can be triangulated.

While every radar pulse must be uniquely identifiable, that feature is already present in modern Doppler pulse radars. What is more difficult is turning data into accurate position estimate, since radar return may arrive to transmitter from variety of directions, due to anomalous atmospheric propagation, signal distortion due to interference etc.

Acoustic detection

Planes are noisy, engines in particular but also airflow over surface. In former case, bafflers are added, while in latter, noise is reduced by shaping plane so as to be more streamlined. However, internal weapons bays, when opened, create a great amount of noise.

Ultra-wide band radar

UWB radar works by transmitting several wavelengths at once, in short pulses. However, there are problems: 1) it is more effective to transmit power in one pulse, 2) UWB antenna must work over factor of ten or more in wavelength, 3) it would offer numerous false clutter targets. In short, if, for example, UH frequency and VH frequency were used, such radar would combine UHF’s and VHF’s advantages AND disadvantages.

Also, it is very hard to make RAM that would be effective against multiple frequencies.

Cell phone network

Telephone calls between mobile phone masts can detect stealth planes with ease; mobile telephone calls bouncing between base stations produce a screen of radiation. When the aircraft fly through this screen they disrupt the phase pattern of the signals. The Roke Manor system uses receivers, shaped like television aerials, to detect distortions in the signals.

A network of aerials large enough to cover a battlefield can be packed in a Land Rover.

Using a laptop connected to the receiver network, soldiers on the ground can calculate the position of stealth aircraft with an accuracy of 10 metres with the aid of the GPS satellite navigation system.

IR illumination

IR illumination – famed “black light” of World War 2, used in Do 17Z-10 and Bf 110D-1/U1 night fighters – works on exact same principles as radar, with only difference being EM radiation’s wavelenght, which is in IR range.

Since it is active technique, it also betrays location of emitter, and thus cannot be relied on for regular use by combat aircraft – althought it can be fitted instead of radar – but can be used by air defense networks.

Detecting LPI radar

F22s radar uses frequency hopping to counter radar recievers. However, it can only use relatively low spread of frequencies, and can be detected by using spread-spectrum technology in RWRs.

Another way to hide radar signal is to include spread-spectrum technology; it is intended to reduce signature of radar signal and blend it into background noise. However, such radar still emits a signal that is 1 million to 10 million times greater than real-world background noise, and each component of radar signal must be thousands of times stronger than background noise of same frequency in order for radar to work. It is relatively simple to build spread-spectrum passive receiver that can detect such radar at distance four times greater than radar’s own detection range.

There are other ways of making radar LPI: 1) make a signal so weak that RWR cannot detect it, and increase processing power, 2) narrow the radar beam and 3) have radar with far higher processing gain than RWR. Option one is impractical for already mentioned reasons – radar must be far stronger than background noise. Option two does not affect target being “painted”, and option 3 is only viable for few years.

Exercises charade

F22 proponents use exercises in which numerically inferior F22 force swept skies clear of enemy fighters as a proof of its supposed effectiveness. However, exercises are preplanned, unrealistical and designed to play at F22s strengths while ignoring its weaknesses as well as reality of air combat.

What is missing from claims of F22s superiority could fill a Bible. First, exercises assume fighters charging head-on at each other with identities clearly known, like medieval knights; then, F22s use their radars to detect adversary aircarft – which are not equipped with modern radars or any radar detectors – and launch computerized missiles which rarely miss. Second, all kills were made from beyond visual range, with positive identification of “enemy” aircraft.

Adversaries, meanwhile, were simulating very simple OPFOR tactics (“Damn the AMRAAM, full speed ahead!”), equal fleet costs and fleet readiness were not represented in fights. Forgotten is the possibility of assymetric response – such as IRST, anti-radiation missiles or radar warning devices, all of them very basic measures that most potential opponents F22 might be used against have. Forgotten is unreliability of BVR missile shots. Forgotten is unreliability of BVR identification – utterly impossible if forces shut down IFF (which they do, so as not to be tracked).

That was also shown by ATF predecessor of F22 – whereas, at first, stealthy ATFs were very successful, very soon adversary (“red”) pilots created tactics which allowed them to use their numbers to unmask stealth planes. To supress Red Force’s unanticipated and undesirable mounting successes, Air Force altered exercises until tests lost all semblance to reality. Successful adversary tactics and undesirable results went unrecorded, and were not reported to superiors; by virtue of “script”, ATF – and therefore F22 – survived.

While F14D Tomcat was equipped with primitive IRST, later replaced by more modern IRST-TSC set, it never participated in exercises against ATF or F22.

Alternatives

There are many alternatives to procuring F22 until a replacement can be designed and put into service. One is restarting production of F15C. Other possibilities include buying Dassault Rafale or Eurofighter Typhoon.

F22s maximum achieved production rate of 36 per year and high cost mean that it would take 7 years and 63,5 billion USD to replace all F15s (254) in service (currently there are 195 F22s built for 80,145 billion USD, 187 operational; replacing F15s would bring number to 441, 60 more than USAF stated minimum requirement. Actual requirement of 762 planes would bring cost to 290 million USD per plane, and total cost to 221,4 billion USD). USAF also has to acquire at least additional 1500 combat planes, which would, with F22, take 42 years and 375 billion USD.

F16 would give 1500 planes for 90 billion USD, within 9 years, and as such would be excellent stopgap measure until a new, non-stealthy, super-agile dogfighter could be designed.

While F35 is touted by USAF as good way to increase numbers, that is not true – first, F35 is a ground attack plane, not a fighter; second, with unit flyaway cost of 207 million USD and unit procurement cost of 305 million USD, it simply cannot give sufficient numbers without dealing death blow to already fragile US economy.

Notes

When USAF chief of staff was aked wether he really believes claims he makes about F22, answer was “I express opinions about F22 that I am told to express.”.

Conclusion

All of the above means that:

  1. F22 cannot get a jump at enemy – at WVR, it will get detected by IRST or visually; at BVR, either plane or missile launch/missile itself will get detected by IRST; and since it has to radiate to find targets, it is at disadvantage in radar area of detection too. It is based at wrong premises and cannot be relied on to secure air superiority, air supremacy, or even air dominance
  2. When ambushing enemy fails, it will be forced into close-in, manouvering dogfight, and killed
  3. F22 is too costly to operate in numbers large enough to win air war. Thus, converting it to fighter-bomber and using it to attack advanced SAMs that are proliferating would be far smarter move, until VHF radars become advanced and numerous enough to completely deny it aerospace
  4. F22 can be easily countered by combining VHF radars and IRST-equipped fighters; with radars handling first detection and then guiding fighters close enough to VLO target for their IRST to acquire it.

F22, is, therefore, literal silver bullet – extremely expensive and less effective than ordinary lead bullet. As can be seen, loyalty to the F22 that some people show does not hold under scrunity – most likely, it is simply emotional attachement to overly hyped and quite sexy airplane. But even Fallen Madonna with Big Boobies that Lt. Gruber obsessed about cannot win a battle, much less war.

Additions

RCS size vs detection range

Target – RCS size in m2 – relative detection range

Aircraft carrier – 100 000 – 1778

Cruiser – 10 000 – 1000

Large airliner or automobile – 100 – 1000

Medium airliner or bomber – 40 – 251

Large fighter – 6 – 157

Small fighter – 2 – 119

Man – 1 – 100

Conventional cruise missile – 0,5 – 84

Large bird – 0,05 – 47

Large insect – 0,001 – 18

Small bird – 0,00001 – 6

Small insect – 0,000001 – 3

Effective range is calculated by formula (RCS1/RCS2) = (R1/R2)^4, where RCS = radar cross section, while R=range.

RAM coatings

RAM coatings can be dielectric or magnetic. Dielectric works by addition of carbon products which change electric properties, and is bulky and fragile, while magnetic one uses iron ferrites which dissipate and absorb radar waves, and are good against UHF radars.

One of most known RAM coatings is iron ball paint, which contains tiny spheres coated with carbonyl iron or ferrite. Radar waves induce molecular oscillations from the alternating magnetic field in this paint, which leads to conversion of the radar energy into heat.

The heat is then transferred to the aircraft and dissipated.

A related type of RAM consists of neoprene polymer sheets with ferrite grains or carbon black particles (containing about 30% of crystalline graphite) embedded in the polymer matrix. The tiles were used on early versions of the F-117A Nighthawk, although more recent models use painted RAM. The painting of the F-117 is done by industrial robots with the plane covered in tiles glued to the fuselage and the remaining gaps filled with iron ball paint. The United States Air Force introduced a radar absorbent paint made from both ferrofluidic and non-magnetic substances. By reducing the reflection of electromagnetic waves, this material helps to reduce the visibility of RAM painted aircraft on radar.

Foam absorber typically consists of fireproofed urethane foam loaded with carbon black, and cut into long pyramids. The length from base to tip of the pyramid structure is chosen based on the lowest expected frequency and the amount of absorption required. For low frequency damping, this distance is often 24 inches, while high frequency panels are as short as 3-4 inches. Panels of RAM are installed with the tips pointing inward to the chamber. Pyramidal RAM attenuates signal by two effects: scattering and absorption. Scattering can occur both coherently, when reflected waves are in-phase but directed away from the receiver, and incoherently where waves are picked up by the receiver but are out of phase and thus have lower signal strength. This incoherent scattering also occurs within the foam structure, with the suspended carbon particles promoting destructive interference. Internal scattering can result in as much as 10dB of attenuation. Meanwhile, the pyramid shapes are cut at angles that maximize the number of bounces a wave makes within the structure. With each bounce, the wave loses energy to the foam material and thus exits with lower signal strength. Other foam absorbers are available in flat sheets, using an increasing gradient of carbon loadings in different layers.

A Jaumann absorber or Jaumann layer is a radar absorbent device. When first introduced in 1943, the Jaumann layer consisted of two equally-spaced reflective surfaces and a conductive ground plane. One can think of it as a generalized, multi-layered Salisbury screen as the principles are similar.

Being a resonant absorber (i.e. it uses wave interfering to cancel the reflected wave), the Jaumann layer is dependent upon the λ/4 spacing between the first reflective surface and the ground plane and between the two reflective surfaces (a total of λ/4 + λ/4).

Because the wave can resonate at two frequencies, the Jaumann layer produces two absorption maxima across a band of wavelengths (if using the two layers configuration). These absorbers must have all of the layers parallel to each other and the ground plane that they conceal.

More elaborate Jaumann absorbers use series of dielectric surfaces that separate conductive sheets. The conductivity of those sheets increases with proximity to the ground plane.

Iron ball paint has been used in coating the SR-71 Blackbird and F-117 Nighthawk, its active molecule is made up by an iron atom surrounded by five carbon monoxide molecules.

Iron ball paint (paint based on iron carbonyl) a type of paint used for stealth surface coating.

The paint absorbs RF energy in the particular wavelength used by primary RADAR.

Chemical formula: C5FeO5 / Fe (CO)5

Molecular mass: 195.9 g/mol

Apparent density: 76.87 g/cmc

Molecular structure: An Iron atom surrounded by 5 carbon monoxide structures (it takes a balllike

shape, hence the name)

Melting point: 1536° C

Hardness: 82-100 HB

It is obtained by carbonyl decomposition process and may have traces of carbon, oxygen and nitrogen. The substance (iron carbonyl) is also used as a catalyst and in medicine as an iron supplement however it is toxic. The painting of the F-117 is done by industrial robots however the F-117 is covered in tiles glued to the fuselage and the remaining gaps filled with iron ball paint. This type of coating converts the radar wave energy into heat (by molecular oscillations), the heat is then transferred to the aircraft and dissipated.

Ideal fighter plane

Ideal fighter plane should be a small, cheap, single-seat single-engine plane. It should have a limited RCS reduction – as much as can be achieved without sacrificing performance or increasing cost too much (no RAM), no active sensors, good visibility and excellent manouverability, and should rely on IR missiles as its main air-to-air weapon.

In real world – we don’t live in Lockheed Martin’s fantasy world, after all – raids at airfields are always a danger – even when you have air superiority. Now, with long-range cruise missiles, more than ever. This means that plane must be capable of flying from hastily-prepared and hastily-repaired airfields, as well as using underground bases and underground runaways.

Links

  1. http://i39.tinypic.com/197es8.jpg
  2. http://www.bmlv.gv.at/truppendienst/ausgaben/artikel.php?id=807(by Google Chrome translate software)
  3. http://www.janes.com/products/janes/defence-security-report.aspx?id=1065969816
  4. http://www.flightglobal.com/blogs/the-dewline/2011/12/08/rafale%20F22.jpg

Related content

F-35 Analysis

Saab Gripen Analysis

Eurofighter Typhoon analysis

Dassault Rafale analysis

Value of stealth aircraft

Is the F-22 really superior to all other fighter aircraft

F-22 fact spinning on USAF website

Posted in Uncategorized | Tagged: , , , , , , , | 57 Comments »

Strategic bombing – from Douhet to drones

Posted by Picard578 on October 7, 2012

Introduction

Gulio Douhet and bomber mafia

Italian general Gulio Douhet was, along with UK politician Stanley Baldwin (who said that “bomber will always get through”), German general Walther Wever, US general Billy Mitchell and UK marshal Hugh Trenchard, one of main advocates of idea that strategic bombing can win war.

Ideas were as following:

  1. war can be won entirely by destruction of enemy military and industrial capability from air
  2. fighters cannot effectively counter bombers – vastness of skies made defense impossible
  3. strategic bombardment can force enemy to surrender by breaking civilain morale

While point #2 was correct until World War 2 (bombers had speed advantage over fighters and lack of means of detection other than visual observation meant that fighters will be unable to scramble in time), introduction in radar and improvements in fighter performance meant that, by 1945, bombers:

  1. could be spotted from long before reaching targets
  2. were slower, lower flying and less heavily armed than fighters

enabling fighters to effectively counter bombers. While fighters, and especially anti-air artillery, did not manage to stop bombers from coming throught, they inflicted unsustainable casualties on bomber formations until escort fighters became avaliable.

Advances in missiles, both AAMs and SAMs, however, made large, heavy, non-maneuverable bombers even easier targets; with each missile being able to destroy bomber in one hit, and heavy bombers lacking maneuverability to evade missiles, any area covered with fighters or SAMs would be closed to them.

Moreover, strategic bombardment failed to break enemy’s will to fight in all instances of its use, thus negating a major point of proponents of the theory. It’s proponents – specifically Gulio Douhet – tended to ignore Close Air Support mission as “useless, superfluous and harmful”.

However, World War II decisively proved him wrong. Despite intense strategic bombardment by both Axis and Western Allies, and heavy civilian casualties, strategic bombardment failed to force enemy to surrender. Same situation repeated itself in Korea, Vietnam, Iraq and Afghanistan. In all of these conflicts, strategic bombardment did exactly opposite – it galvanized people in resistance against agressor; and every war in which strategic bombardment was used, was lenghtened due to it.

Walther Weawever, on the other hand, believed that heavy bombers can:

  1. destroy enemy air force by bombing its bases and aircraft factories
  2. prevent movement of large enemy forces by destroying railways and roads
  3. support operations of army formations
  4. support naval operations by participating in naval battles and attacking enemy naval bases
  5. paralayze enemy armed forces by stoppong production in armaments factories

Heavy bombers, however, proved inadequate for most of these missions.

“Industrial Web Theory” also came into being. Idea was that industrialized nations had certain points that were vulnerable to attack, and that these points could cripple entire industry. Unlike Mitchell, Douhet believed that attacks on enemy air force are futile.

One of main reasons why strategic bombing was, and is, popular, is that it provides justification for independent air forces in age of joint military operations. For the same reason, CAS mission is hated by USAF despite its effectiveness, because it makes them feel like part of Army artillery.

History of strategic bombing

World War I

History

While tactical bombing from aircraft was carried out from early in the war, the first ever aerial bombardment of civilians was carried out on January 19, 1915 – two German Zeppelins dropped 24 fifty-kilogram incendinaries in Great Yarmouth, Sheringham, Kings Lynn and the surrounding villages, killing four people. Public and media reaction was, however, out of proportion.

But main use of airpower was in scouting, and preventing enemy scouting, which led to development of fighter aircraft. Also, UK Royal Navy’s fighter aircraft were used to prevent German Zeppelin bombardments.

Decision to take offensive against German Zeppelin facilities led to development of first British strategic bomber, Handley Page 0/100.

German Zeppelin bombardment, meanwhile, killed 500 people through 1915 and 1916, forcing RAF to allocate 17 000 officers and men to home air defense. While Zeppelins were initially thought of as invincible – they were almost as fast as aircraft, carried a greater bomb load and multiple machine guns, and had great range and endurance; while it was not easy to ignite hydrogen using standard bullets – and had great pschologycal impact (although their strategical impact was unimportant), development of incideary ammo led to the loss of SL.11, ending Army’s interest in strategic bombardment of Britain for a while. German Navy (Kasierliche Marine), however, continued raids.

12-Zeppelin raid was launched on 23-24 September 1916, in which two Zeppelins were lost. 11-Zeppelin raid was launched on 1. October 1916., although only one arrived to targets due to bad weather and was destroyed.

In 27-28 November raid, by unknown number of Zeppelins, two were lost.

In 1917, new Zeppelins were introduced, with increased operating altitude. First raid by these Zeppelins was in 16-17 March, when none of Zeppelins reached targets, as happened to next raid on 23-24 May. Two days later, raid by Gotha bombers was halted by clouds.

In 16-17 June raid, two out of six Zeppelins reached England, and one was destroyed when it was forced to drop to 4 000 meters due to engine and compass problems.

All later raids through 1917 were ineffective. In 1918, there were four raids, with one Zeppelin lost.

Analysis

Strategic bombing in World War One never had a chance to either prove or disprove Douhet’s theory, due to small scope of bombardment. However, interesting to note are high casualty rates among Zeppelins carrying out bombardment, in spite of original assumptions, and technological advancements which rendered pre-war assumptions invalid, such as incidientary ammo. Same story will repeat itself in World War II.

World War II

Allied campaign

First use of air power in World War II was by Germany. While German generals believed Douhet, they also saw value of precision bombing of tactical targets via dive bombers. These bombers proved important part of Blitzkrieg. Yet, Germany performed strategic bombing from early in the war – such as destruction of Warshaw.

In following Battle of Britain, Douhet’s ideas were to be put on a thorough test after Hitler switched targets to be attacked from military – airfields, radar station, depots – to targeting of the civilian poplation centres. That was a classic Douhet-esque move, aimed at winning a war by breaking civilian morale.

One part of Douhet’s theory was immediately proven wrong by fact of German attack alone – entire UKs heavy bomber fleet did not prevent Germany from bombing British islands. Nor did British retaliation make them withdraw attacks.

However, by switching targets from military to civilian ones, Hitler had allowed by-then badly mauled RAF time to regroup and lick its wounds. Meanwhile, RAFs bombing of German cities – made in retaliation to German bombing – did not stop German attacks on UK cities. Moreover, RAF was forced to change strategy to indiscriminate, and ineffective, night bombing after unescorted day bombing raids failed to come through. Thus came to rest second part of Douhet’s theory.

As matter of fact, there is evidence that Churchill used accidental bombing of London on the night of August 24 to launch counter raid on Berlin; next day Hitler ordered Luftwaffe to switch to bombing cities – which cost it victory in the Battle of Britain.

USAAC also started daylight bombing from heavy bombers, but this time attemoting to destroy Germany’s industrial might. They believed that heavily-armored, heavily-armed B17 will be able to escort itself to and from the target; however, Luftwaffe used light bombs and rockets to bring down unescorted bombers, and no amount of armor proved adequate.

Priorities were described as following:

  • submarine pens and construction yards
  • German fighter aircraft production plants
  • rail network in France and Germany
  • Germany’s fuel supply
  • generalized targets in Germany’s war industry

Aim was to weaken or destroy Germany’s military, industrial and economic system as well as will of German people to fight.

First target were ball bearing plants. However, bombing was halted until early 1944 after losses of 10-35 % per sortie through 1943. It also failed to have any effect – not only there is no evidence that attacks had any lasting effect on ball-bearing industry, but Germany also had large surplus of ball bearings, plus supply from Sweden and Switzerland. Only thing it did was to provide Luftwaffe with opportunity for turkey hunt. Only between 10 and 35 % bombs fell within 5 miles radius of target during each raid; moreover, only 66 % of aircraft actually attacked targets.

Attacking submarine pens also proved useless, since pens were protected by 6 to 8 meters of steel-reinforced concrete. Albert Speer also dispersed submarine production facilities and moved assembly to invulnerable factories, which made further attacks useless.

Attacking rail system at France also failed to stop flow of supplies due to imprecision of bombing and great number of rails avaliable. It was nearly stopped, however, by P-47s and other fighters flying bombing missions, destroying vehicles and lines of communication in precision attacks, slowing German economy.

Attack on Ploesti oil fields had cost Allies half the aircraft. Yet despite oil industry’s importance and vulnerability, it was fourth on the list, and attacks only recommenced in 1944, where oil production was already droppong due to Russian pressure.

Attack on fighter aircraft industry, meanwhile, had opposite effect – Germany increased its fighter production, from 8 295 in 1939 and 15 596 in 1942 to 39 807 aircraft in 1944. However, bombing was success in a sense that bombers drew German fighters where they could be shot down by superior numbers of Allied fighter aircraft – it was P51 that won air superiority over Europe. In fact, by D-Day, Luftwaffe could only launch 200 sorties a day, as opposed to 15 000 sorties a day for Allies. Heavy bombers, meanwhile, failed to destroy German fortifications at Omaha beach. Meanwhile, 1500 P-47s badly mauled 23 German divisions, delaying them for as much as six weeks – whereas original travel time predicted was 3 days; in short, P-47s in CAS role saved invasion from becoming disaster.

All attacks against manufacturing industry had same effect: while production would suffer temporary setback after the raid, it would recover in matter of few weeks. While German industry suffered badly during latter 1944, there is no evidence that bombing was the cause; Soviet pressure, lack of raw resources and many other factors were making for its collapse. Galbraight’s report also indicates that strategic bombing actually helped to streamline, rather than injure, war production, forcing them to bypass usual bureocratic obstacles.

Moreover, RAFs indiscriminate attacks on German cities had the same effect as German attacks on British cities – instead of breaking enemy’s will to fight, they strenghtened it. In Germany, 570 000 people were killed by bombings – yet despite all this, German will remained strong, and German military and overall economic production rose until August 1944 – whereas in beginning of 1940, monthly production figure for Me-109 was 125, it reached peak with monthly production of 2 500 by autumn of 1944 – after year and half of massive bombardment of production plants. If Germany had been producing 2 500 fighters and dive bombers per month since 1939, it could have well won the Battle for Britain.

Heavy bombers only proved effective once they started being used in direct attacks on German military units – that is, Close Air Support. But that is not what heavy bombers are made to do, and is opposite of Douhet’s theories. Not only did bomber loss rate drop by 75%, but they also succeded in disrupting communications – particularly road and rail network.

Strategic bombing, however, was effective in two ways: first, it drew out Luftwaffe and enabled its destruction by Allied fighters. Second way was actually German blunder: instead of producing fighters and training pilots, Germany had more than 55 000 anti-aircraft guns, which used up 20 percent of all ammunition produced, to almost no effect.

Strategic bombing campaign also caused great deal of losses amongst Allied air crews: RAF lost 1404 four-engine bombers through 1942, around 300% of its heavy bomber strength at any point of time during that year. During “Battle of Berlin” between August 1943 and March 1944, RAF bomber command lost its entire fleet every three months – between January 1943 and March 1944, losses totalled 5881 bombers with almost 29 500 airmen (all losses were over Axis-controlled terriroty). In three to four years of bombing, between 1942 and 1945, RAF bomber command suffered over 70 000 casualties and made absolutely no impression on German war production.

On island of Pantelleria and Pelagian atoll, near Sicily, 5 600 tons of bombs dropped by bombers failed to “convince” Italians to surrender.

On US side, half of US’ WW2 budget went to air power, and 65% of that went to multi-engined bombers. Strategic bombing failed to affect German war production, and as result, from March 1944 onwards, 65% of bomber sorties were directed against German positions as opposed to war production. While fighters suffered loss rate of 1,1% at most, bomber loss rate was around 4,5%, with 6 to 10 crew members lost per aircraft, as opposed to 1 crew member lost in fighter.

Out of eight strategic bombing campaigns – against ball bearing, aircraft, steel, armored vehicle production, electrical power, truck production, fuel production and submarine pens – all except oil production campaign were deemed unsuccessfull by USSBS. However, dire German fuel shortages can be attributed to Soviet capture of Ploesti oil fields, although oil fields are vulnerable to bombardment.

Pacific War also proved the same; US indiscriminate bombing of population centres failed to force Japanese surrender, and even atomic bombs – opposite to general opinion – were ineffective. Despite “precise bombing” campaign, B29 force destroyed none of designated high-priority targets, but firestorms created by napalm bombs killed 120 000 people in Tokyo alone, and all 68 major cities, except Hiroshima and Nagasaki, were burned to the floor by incidientary bombs. Yet Japanese did not accept US terms of surrender, and even after usage of atomic bombs, they surrendered only after US accepted their single term; namely, that Hirohito remains Emperor.

Moreover, Japanese have been trying to surrender since defeat at Midway, since they knew they could not win after that setback. Peace feelers continued through ’42, ’43 and ’44, yet US continued to demand unconditional surrender and that Hirohito be tried for his crimes, and possibly executed – neither of which happened anyway, but US knew these terms were unacceptable to the Japanese. Despite general opinion that atomic bombs ended the war in the Pacific, truth is different – they lenghtened it; main purpose of bombs was to scare Soviet Union.

Axis campaign

From 1930s onwards, Axis airpower spending was focused on bombers. In Germany, Col. Gen. Ernst Udest was only opponent of strategic bombing, and was responsible for development of Stuka, which received only 2% of spending – and fact that Udest was close friend of Hermann Goering was probably only thing keeping Stuka from being cancelled – as soon as Udest died in 1943, Stuka’s procurement ended.

Until 1943, production of bombers was 5 bombers for one Stuka – which translated into 25 crewmen for bombers for every two crewmen for Stukas (on average, heavy bombers had 5 crewmen per aircraft while Stukas had two) and 25:1 cost ratio. Out of 114 000 aircraft produced by Germany in World War II, 25 000 were bombers, and only 4 900 Stukas; only 1 000 bombers less would have resulted in doubling number of Stukas, and cancellation in bomber procurement could have resulted in 125 000 more fighters, dive bombers and/or tanks – although crew requirements for last would have reduced the number substantially.

During attack on countries of Benelux, Luftwaffe lost 67 bombers and 16 Stukas. Stukas, meanwhile, excelled in Close Air Support, allowing Wehrmacht to easily cross Meuse river by using pontoon bridges, which British bombers failed to eliminate. During battle of Dunkirk, RAF lost 60 fighters shot down and 117 damaged; Luftwaffe lost 240 aircraft, most of them multi-engined strategic bombers. Per-aircraft, average loss was 0,5 crewmen for fighters, and 0,8 – 0,85 for strategic bombers. While Luftwaffe managed to destroy 6 destroyers and 230 lesser ships, most of casualties were inflicted by dive bombers.

In Battle of Britain, Luftwaffe had 1 109 fighters (809 Me-109s), 316 Stukas and 1134 strategic bombers against 741 fighters (279 Spitfires) on British side.

During first phase of battle, Stukas managed to sink one of every three British ships using English Channel; within three weeks, British ships were forced to abandon the Channel.

During second phase, Luftwaffe strategic bombers started bombing RAF fighter bases in hopes of achieving air superiority. They failed, loosing 621 bombers (45 % initial strength) and 88 Stukas (21 % of initial strength). Moreover, Stukas flew sorties at three times bomber’s rate.

After these crushing losses, Germany switched to night attacks, fuelling British desire for revenge – and their war production.

On Eastern Front, Me-109s shot 179 Soviet strategic bombers they tried to use as early retaliation. Despite that, and despite heavy fuel shortages, Luftwaffe continued to use strategic bombers in campaigns of terror, increasing Soviet morale as well as worsening fuel shortages that were hampering its missions. Other than that, strategic bombardment achieved nothing.

Worse part was that only 300 Stukas were avaliable to cover entire 2 200 mile (3 500 kilometer) front, missing many opportunities for turkey shoot against disorganized Soviet units. Given great successes of Stukas against tactical targets (most successfull Stuka commander had 518 tank kills, second most successfull over 300), as well as possibility of usage of Stukas against Soviet lines of communication, bomber production probably cost Germany any possibility of success on the Eastern Front. In 1941, Luftwaffe had lost 1 798 bombers from beginning number of 1 339, while Stuka losses were 366 from beginning number of 456. That also translates into ~7 000 crewmen lost in heavy bombers for ~180 in Stukas. On a per sortie rate, bomber losses were 500% greater.

It also took one Stuka to sink Soviet battleship Marat – whose 25 million USD cost equalled the cost of entire Stuka production run. Meanwhile, in a similar situation, British sent 299 heavy bomber attacks against Gneiseau, Scharnhost and Prinz Eugen, loosing 43 bombers and 247 airmen; later, they lost 60 aircraft, mostly bombers, and 345 airmen trying to sink ships while they were escaping – out of 150 Me-109s providing cover, 17 fighters and 11 airmen were lost.

Despite all this, Stuka production was cancelled in 1943, with last Stuka being produced in July 1944. Meanwhile, a well-concieved A10-esque follow-on, Hs-129B, equipped with armored cockpit, two widely spaced engines and a 30 mm cannon, was never produced. Cannon itself held enough rounds for 18 tank-killing attacks, compared to 6 for Stuka. Russians, meanwhile, produced 36 000 of Sthrumovik IL-2 CAS aircraft, which allowed them to win first Battle of Kursk (at Prokhorovka, where I don’t know of any CAS aircraft participating, Germans permanently lost 7 AFVs and destroyed 134 Soviet AFVs).

Germany also produced specialized revenge weapons – V1, which was slow and easy to shoot down, and V2, which, while it could not be shot down, was imprecise). 6 000 V2s were produced and 3 000 were successfully launched; for the 6 000 V2s, 48 000 tanks or 24 000 fighters (and Stukas) could have been procured.

Impact of strategic bombing on economy of country undertaking it

(from John Fahey’s paper)

On example of Great Britain, we will analyze impact of strategic bombing campaign on a country using strategic bombing on the enemy.

Britain has expended 2,75 billion GBP on strategic bombing, or 2 911 GBP for every sortie flown, that is, 5 914 GBP per every civillian killed in the bombing.

For purposes of its air offensive during World War II, Great Britain increased domestic production from 893 aircraft in 1935 to 26 461 aircraft in 1944, whereas total mass of aircraft produced increased 11 times.

Moreover, in order to conduct war Britain had to recruit and train over million men and women to serve in RAF, 100 000 to 150 000 of which were required to operate Bomber Command, and uknown number in roles connected to Bomber Command. Moreover, large aircraft and numerous aircrews both required large bases to operate; bombs which were to be dropped on enemy cities also had to be manufactured, and fuel had to be imported. In February 1944, Sir Archibad Sinclair told the House of Commons that the Bomber Command received largest share of resources dedicated to war.

UKs post-war economy was in shambles, with UK being in as large danger of collapse as Germany was. Between 1939 and 1945, Britain lost 7 billion GBP of its wealth; during that period, total British government spending had amounted to 28.7 billion GBP of which 22.8 billion GBP (79.4 percent) was spent on defence, and at least 2,78 billion GBP on Bomber Command; British Government expenditure outside defense was 5,94 billion GBP.

Also, factories and airfields built for strategic bombers were single use assets.

Korea

Three years after World War II, fighter production was down from 2 000 per month to 11 per month. Meanwhile, force was approved that would consist from 112 heavy bomber groups – 10 000 heavy bombers; in 1947 that went down to 75 heavy bomber groups and 25 light bomber/fighter groups (latter ones grouped “light” two-engined bombers with fighters). Assuming 50/50 division, only 12 percent of force structure would have been fighters (situation is even worse today – at planned structure of 187 F22s and 2443 “F”35s, only 7% of USAF stealth aircraft would be fighters).

Heavy bombers were also used in quasi-cose support by attacking enemy troops. But their imprecision, low numbers and even lower sortie rate meant that they could not perform it successfully. Moreover, entire B29 force (eventually brought up to 150 aircraft) flew less than 1 000 sorties in three years. At average, USAF flew 13 CAS sorties a day during entire war.

After B29s were withdrawn from CAS, they were used in classic Douhet daydream – bombing civilian populace in effort to force enemy to surrender. In three years, they caused two million civilian deaths; yet North Korea did not surrender. North Korean mlitary production and military operations were unaffected. Following winter, 900 000 Chinese intervened, routing UN forces. Heavy bombers threw 4 000 bombs, achieveing 33 hits, to no meaningful effect.

In May 1952, Fighter Command shut down 90% of North Korean power plants. Meanwhile, North Korea received 500 MiG-15s, which failed to win air superiority against (performance-wise equal) F86s – of which 90 were in theatre. Later, they built up to 1300 MiGs, which failed to defeat 200 F86s. Bombers, meanwhile, suffered 10% loss rate, as opposed to Air Force wide 0,2% loss rate.

Vietnam

After Korean War, bombers again came to dominate Air Force funding. Most “fighters” developed were actually nuclear bombers; F111, tri-role (air to air, interdiction and CAS), tri-service fighter bomber turned out to be 35 000 kg nuclear bomber – which it actually was all along. It failed in everything. All of these (F4, F105, F111) were used in strategic bombing of North Vietnamese cities, where 1 “fighter” + 1 tanker = 1 strategic bomber equation was in effect.

Three times more bombs were dropped on North Vietnam than on Germany; US had complete air superiority. Yet, it lost the war. Bombings of Hanoi and Haiphong, as usual, only served to strenghten morale of North Vietnamese, and their will to win. USAF managed to destroy three unimportant bridges after five years of strikes and loss of 100 USAF and USN fighter-bombers (which were bombers first, fighters second). Strategic bombing also failed to stop the flow of supplies to insurgents in the South; total of 1737 combat aircraft were lost.

In South, B52s equipped with Hope Spot system were semi-successfully used in quasi-close support; however, they failed due to their size, vulnerability and low sortie rate. Bombing of Hanoi also failed to give US leverage in peace negotiations. On the other hand, 1944-designed A4 close support propeller aircraft were successfully used in Close Air Support, both at night and at day – they were slow, maneuverable and highly survivable.

First Gulf War

In operation Desert Storm, all strategic bomber was carried out by fighters and light bombers (F117), while heavy bombers carried out quasi-close air support. Strike fighters, using precision weapons – which were far less effective than claimed – still did heavy damage. 3 to 15 times more bombs than necessary was dropped at each target – without real success, although objective of preserving Kuwait’s oil for use by United States and its allies was a success. Kuwait, however, was liberated mostly by ground forces and destruction of Iraqi armor and artillery was mainly carried out by only aircraft USAF generals universally hate – A10.

It also failed to push Iraqi populace into removing Saddam Hussein, and failed to destroy Iraq’s Republician Guard – 60% of which escaped while Air Force was busy destroying facilities and killing civilians. While 39 days of strategic bombardment knocked out electric power and civilian communications, it had little effect on military activities.

F117 was a minor player in the war – it flew 1 300 sorties (3% of total), making 2 000 laser bomb attacks, most of which failed to knock out targets attacked. Strategic bombers (B29 and F16) failed to achieve significant effect against dug-in Republician Guard. A10s meanwhile mauled Iraqi Guard units sent to attack Khafji, while strategic bombardment ended after two weeks due to targeting blunder killing 300 civilians; militarily, it made no difference. In short, it was hated CAS mission that yielded results, not strategic bombing.

Yugoslavia

During Operation Allied Force, NATO aircraft flew 38 004 sorties, including 10 484 strike sorties. During sorties, 23 614 air munitions were released, for a total of 6 303 tons. 35 per cent of munition pieces were precision-guided. NATO also lost two aircraft – less than expected piecetime training losses – with one more being damaged and written off (some data put number of sorties flown at 36 000).

However, effects were not what were expected. Only three of 80 radar missile batteries were destroyed; Serbia suffered 387 military and 1 400 civilian casualties.

JNA also fired 845 radar-guided SAMs, accounting for three kills – one F16 and one F117 shot down, and another F117 mission-killed. Results of bombing campaign, meanwhile, were minimal.

Afghanistan and Pakistan

During Obama’s presidency, drone strikes went up from 5 a year during Bush regime, to 90 per year. In 2002, there were 167 drones in US inventory. In August 2010, United States had some 7 000 drones; in 2012, number is 7 500, while there are 10 800 manned aircraft. 161 of them are bombers.

As a Cathecism of Catholic Church says about use of force:

“The damage inflicted by the aggressor on the nation or community of nations must be lasting, grave, and certain… All other means of putting an end to it [confl ict] must have been shown to be impractical or ineffective; There must be serious prospects of success [of the use of force]… and the use of arms must not produce evils and disorders graver than the evil to be eliminated”

Some other religions, to my knowledge, have similar views about use of violence – Islam in particular, and possibly Hinduism as well, while Buddhism forbids killing (interesting to note about Christianity and Judaism is that, in Old Testament, there are 10 Commandments. Sixth Commandment is often mistranslated as “Do not kill”, whereas correct translation would be “Do not murder”. In short, killing is acceptable, but only in self-defense, and only when all other options have been exhausted – everything else is murder; Christianity also encourages passive resistance against oppression (Mahatma Ghandi, anyone?), but that is outside of scope of this analysis).

Strategic bombing, including “precision strikes” by drones, fails at every single criterion. Drones are even worse, however, in a sense that they dehumanize war – drone operators are basically playing war games, except in these war games, real people are getting killed (the effect is called “Playstation mentality”). Moreover, they are out of harm’s way – which may be viewed as a good thing, but in reality is not; as public at home becomes increasingly less aware of real cost of war, war becomes less and less of a last resort. Drones may save lives of aviators, but they are likely to increase casualties in the long run.

Aside from being morally wrong, it is also illegal, as United States often extend bombing into Pakistan. It is also imprecise as any other bombing – and while it may be able to hit vehicles and relatively small areas relatively precisely (at least when compared to WW2 bombers), drones cannot reliably ID individual targets, particularly when targets are people who do not use uniform or vehicles. Moreover, drone strikes are, for all intents and purposes, assasinations – which was banned by Ronald Reagan under Executive Order 12333, issued on December 4, 1981.

From 2001 to 2003, as many as 3 600 civilians were killed in drone strikes. In 2005 – 2008, number was approximately 3 200 civilians. For every militant killed, as many as 50 civilians die. Drones are also known to target civilians who come to help victims of opening strikes.

In Pakistan, over 2 800 of the 3 000 people killed in 2005 – 2012 drone strikes were civilians; only 170 were militants.

Also, Obama has developed a creative way to count civilian casualties. All military-age men killed in a drone strike zone are considered to be combatants, “unless there is explicit intelligence posthumously proving them innocent.” Thus official US sources certainly severely underestimate civilian deaths.

And while drone strikes did short-term damage to Al Quaeda, long-term effects are same in all other applications of strategic bombing: strenghtening enemy’s will to fight, and, in this case, bringing more recruits to his cause. Which, having in view US’ dependance on continuous small wars, may have been exactly what US leadership wants. Also, above mentioned problem of decreasing awareness of costs of war at home also helps MICs cause of continuing wars. In similar way that representative democracy creates “democratic deficit”, by removing people away from decision making by layers of bureocracy, usage of drones creates “reality deficit”.

Moreover, drones are everything except safe, from every possible standpoint. Militarily, drones can be hacked; crash rates are also high, even when noone is shooting at them. Drones can also “go rogue” – that is, control is lost. In September 2009, USAF had to shoot down its own drone when it went rogue and threatened to leave Afghanistan with full payload of missiles. In 2008, there was incident when drone used by Irish peacekeepers in Chad decided to go home to Ireland after communications loss. It didn’t make it.

With regards to hacking, insurgents were already able to hack into drones’ live video feed.

Second Gulf War

Before Second Gulf War, USAF advertised that 40-day air campaign will topple regime without ground invasion; they settled for 10 days; during first two, only 1 500 precision bombs were delivered, out of 10 000 planned.

Both Air Force and Navy failed to assasinate Saddam Hussein, and General Tommy Franks launched an invasion which toppled regime in 21 days.

Libya

In Libya, Obama has violated aforementioned resolution signed by Presidents Ford, Carter and Reagan, which forbids assasination, by targeting Moamer Quadaffi. Moreover, entire war was declared on illegitimate grounds.

Again, it has been proven that air power alone cannot achieve goals.

Libya was attacked not only because of its oil, but because Gadaffi attampted to refuse Dollar and Euro, and implement single African currency and EU-esque alliance of African states.

Civilians in Tripoli have died in large numbers due to bombardment, to no effect. Again, air power was only effective in air-to-ground assignments when used in direct support of troops on the ground. Right now, Libya is in transition towards constitutional corporatistic demoncracy; and that is result of Libyan rebels’ ground campaign, not EU’s and US’s strategic bombardment.

Conclusion: usefulness and consequences of bombing

Strategic bombing – any kind of it, but especially terror bombing carried out from World War II until today (drones!) – has neglible military impact. However, it helps motivate civilian populace to fight harder and longer against enemy carrying out bombing.

Precision bombing, itself, is overrated. Guidance systems can be jammed or disrupted by weather or by enemy; intelligence also must be avaliable beforehand to ensure that bombs hit right targets, and ones which enemy values most. And even when nothing of that happends, precision weapons’ precision is never up to the advertised level.

Moreover, precision weapons are expensive, and expended rapidly – in one (admittedly extreme) case, a F16 and B2 used several 500-pound (230 kg) bombs, several cluster munitions and sixteen 2000-pound (910 kg) bombs to destroy Toyota pick up truck with 15 suspected militants.

Also, even in modern times precision bombing from high altitude requires directions from ground to be effective – directions which may not be avaliable due to possible jamming, lack of communications capacity and so on.

Bombing on its own was never effective; it must be used in support of and concurrently with ground offensive. Bombing on its own cannot ensure fulfillment of either military and especially not fulfillment of political goals. War by precision firepower can easily become killing without purpose. It is important to always keep in mind nature of war as fulfillment of political goals by military means, as defined by von Clausewitz; in that sense, anything that does not further that goal is a waste of time and resources; and strategic bombing has never proven to be anything else. It can be used, however, to remove threat from SAMs before invasion, so as to allow other aircraft to carry out CAS mission.

More disturbingly, myth of “precision bombing” introduced idea of clinical, clean war, slowly removing concept of war as a last resort. Censorship ensures that consequences of bombs missing their targets are not shown; noone feels much compassion for a block of concrete shown on IR camera.

“Paralysis” or “Shock and Awe” theory claims that superior firepower can shock enemy to an extent that he will become incapable of retaliation. It is continuation of basic Douhet logic – and it failed, again.

Modern day USAF

While some will say that USAF has learned its lessons, it hasn’t. F15A, F15C and F22A are only dedicated fighters in US arsenal – and all of them made large sacrifices to BVR altar, while F22A was subsequently turned into faux-multirole aircraft. F15E and F16 are turned into bombers, although they do keep good air-to-air capability. F35, on the other hand, is pure bomber/ground attack aircraft, with capability to carry AAMs thrown in purely so as to allow USAF generals and PR staff to say “well, it CAN fight other aircraft”. It can fight, but it won’t win without good numerical edge – which is a problem, considering that F35 is second most expensive “fighter” out there, after F22.

Appendice: Myth of a nuclear deterrence

From Ward Wilson’s text

Nuclear deterrence works on a threat to devastate enemy’s cities. However, history shows that destroying cities rarely affects outcome of the war; attacks on civilians are not only indecisive, but counterproductive.

Argument holds that no exchange between nuclear-capable states is likely since loss of multiple cities is unacceptable price; and usage of even few nuclear weapons against non-nuclear-capable state would force it to immediately surrender.

Most of it is based on bombings of Hiroshima and Nagasaki. However, evidence shows that Japanese have been trying to surrender since Battle of Midway in 1942.

Thus, main aspect of nuclear deterrence is not threat of destroying enemy’s cities, but rather threat of destroying enemy’s conventional forces with tactical nuclear missiles. However, possibility of nuclear attacks against cities exists in later stages of conflict. Yet, nuclear deterrence assumes that civillian lives matter to the politicians, and that they are influenced by deaths of noncombatants. There is, however, little evidence for that – as seen from above. All predictions of strategic bombing ending the war or hastening the end of the war have been proven wrong.

Evidence that destroying cities does not force enemy to surrender can be traced from Ancient and Middle Ages. Genghis Khan, during his campaign in the Central Asian empire of Khwarazm in 1220, made a practice of destroying cities and slaughtering their inhabitants. Yet none surrendered. During the Thirty Year War, slaughters were regular occurence, and the city of Magdeburg was destroyed in 1631 and its inhabitants slaughtered. War continued like nothing happened.

Despite burning of Atlanta in 1864 and capture of Southern capital of Richmond, Virginia, in 1865, US Civil War continued until armies of generals Robert Lee and Joseph Jonhston were defeated.

During siege of Alesia, both Gauls and Romans rather sentenced Gaulish civilians to death rather than to allow their own supplies be exhausted on non-combatants.

During World War II, 50 to 70 million people died – at least 47 million were civilians. During Thirty Years War, 20 percet of civilians in Germany lost their lives. Yet war went on. In the Paraguayan War, 58% of civilians in Paraguay were killed in five years; war went on.

Extermination attacks, meanwhile, are not credible, simply because there was single extermination attack against enemy in 3 000 years of warfare – Roman war against Carthage. Yet it only came after a series of massively harmful wars – in one of them, Second Punic War, Romans had lost 5 % of their population (France, which had lost 4,2 % of its population in First World War, is talked about as having been “bled white” and “lost entire generation”).

As can be seen, strategic bombing – both nuclear and non-nuclear – works on a threat to civilians; same as terrorism, and is accurately described as “terror bombing”. However, terrorism is ineffective when aimed towards civilian population (indeed, it only increases its will to fight, which US corporatists have masterfully used on 9/11 to shape public opinion). Terrorist groups were effective 7% of the time – economic sanctions, 34%. Moreover, all successful terrorist groups were not actual terrorist groups, but rather guerilla fighters – in short, they ignored civilian targets and focused on military ones.

As for nuclear deterrence being responsible for peace for last 67 years – that is false. Large wars are always followed by periods of relative peace, and these last 67 years were anything except peaceful; there only wasn’t a world-wide conflict.

Moreover, chemical weapons developed during and after World War I could be as deadly as nuclear weapons – yet they did not prevent World War II, and were not used in World War II with exception of Japanese usage – and even then, Japanese used them exclusively against enemies that could not use chemical weapons against them. While Germany had developed and sotockpiled chemical weapons, these were not used due to fear of Allied retaliation in kind. No historical books credit peace maintained from 1918 to 1925 to chemical weapons.

US nuclear monopoly for four years after World War 2 did not translate into greater diplomatic influence either, and nuclear weapons did not help either Soviets or US win any wars.

Posted in doctrine | Tagged: , , , , , , , , , , , , | 18 Comments »